1. Rút gọn biểu
\(\frac{x-\sqrt{3x}+3}{x\sqrt{x}+3\sqrt{3}}\) với x >= 0
2. Trục căn thức ở mẫu
\(\frac{1}{\sqrt{5}-\sqrt{3}+2}\)
3. Tìm x, biết
\(\sqrt{3x-2}\)= \(2-\sqrt{3}\)
Bài 1: Giải phương trình sau:
\(2x^2+5+2\sqrt{x^2+x-2}=5\sqrt{x-1}+5\sqrt{x+2}\)
Bài 2: Cho biểu thức
\(P=\left(\frac{6x+4}{3\sqrt{3x^2}-8}-\frac{\sqrt{3x}}{3x+2\sqrt{3x}+4}\right).\left(\frac{1+3\sqrt{3x^2}}{1+\sqrt{3x}}-\sqrt{3x}\right)\)
a) Tìm ĐKXĐ và rút gọn biểu thức P
b) Tìm tất cả các giá trị nguyên của x để biểu thức P có giá trị nguyên
Bài 3: Cho biểu thức
\(A=\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{1-\frac{8}{x}+\frac{16}{x^2}}}\)
a) Tìm ĐKXĐ và rút gọn biểu thức A
b) Tìm tất cả các giá trị nguyên của x để biểu thức A có giá trị nguyên
1.
a.Cho biểu thức \(N=\frac{\sqrt{x}+\sqrt{7}}{\sqrt{x}-7}\) . Với giá trị nào của x thì biểu thức N xác định
b.Khử mẩu của biểu thức lấy căn \(\sqrt{\frac{-5}{3x}}\)(x khác 0)
c. Tính \(\sqrt{\sqrt{3}-\sqrt{1-\sqrt{21}-12\sqrt{3}}}\)
2.
a. Rút gọn biểu thức
b.Tính giá trị của biểu thức \(2\sqrt{60}-15\sqrt{\frac{3}{5}}+\left(\sqrt{3}-\sqrt{5}\right)\sqrt{3}-\frac{4\sqrt{5}}{\sqrt{3}-\sqrt{7}}\)
3. Cho biểu thức \(P=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3\sqrt{x}+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)\(\left(x\ge0\right)\left(x\ne0\right)\)
a. Rút gọn
b.Tìm tất cả các giá trị của x để \(P< -\frac{1}{3}\)
3.Rút gọn biểu thức :A=
\(\sqrt[3]{\frac{x^3-3x+\left(x^2-1\right)\sqrt{x^2-4}}{2}+\sqrt[3]{\frac{x^3-3x-\left(x^2-1\right)\sqrt{x^2-4}}{2}}}\)
mk nghĩ bạn chép sai đề hình như đề bài phải là \(A=\sqrt[3]{\frac{x^3-3x+\left(x^2-1\right)\sqrt{x^2-4}}{2}}+\sqrt[3]{\frac{x^3-3x-\left(x^2-1\right)\sqrt{x^2-4}}{2}}\)
ta xét \(A^3=\left(\sqrt[3]{\frac{x^3-3x+\left(x^2-1\right)\sqrt{x^2-4}}{2}}+\sqrt[3]{\frac{x^3-3x-\left(x^2-1\right)\sqrt{x^2-4}}{2}}\right)^3\)
<=> \(A^3=x^3-3x+3A\cdot\sqrt[3]{\frac{4}{4}}\)
<=> \(A^3=x^3-3x+3A\)
<=> \(A^3-3A-x^3+3x=0\)
<=>\(\left(A^3-x^3\right)-3A+3x=0\)
<=> \(\left(A-x\right)\left(A^2+Ax+x^2\right)-3\left(A-x\right)=0\)
<=> \(\left(A-x\right)\left(A^2+Ax+x^2-3\right)=0\)
<=> \(\orbr{\begin{cases}A=x\\A^2+Ax+x^2-3=0\end{cases}}\)(vô lí )
vậy \(A=x\)
cho biểu thức P= \(\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
a, rút gọn P
b, tìm giá trị nhỏ nhất của P
Cho biểu thức: P=\(\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{2}-2}{\sqrt{x}-3}-1\right)\)
a) Rút gọn
b) Tìm x để P<\(\frac{1}{2}\)
c) Tìm GTNN
a) ĐKXĐ: \(x\ge0;x\ne9\)
mk chỉnh lại đề bài nhé, chắc có lẽ bn ghi nhầm:
\(P=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
\(=\left(\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-\frac{\sqrt{x}-3}{\sqrt{x}-3}\right)\)
\(=\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\frac{2\sqrt{x}-\sqrt{x}+1}{\sqrt{x}-3}\)
\(=\frac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\frac{-3}{\sqrt{x}+3}\)
1. Cho biểu thức:
\(C=\frac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+\:1}{\sqrt{x}+\:2}+\frac{\sqrt{x}+2}{1-\sqrt{x}}\)
a) Tìm điều kiện của x để C có nghĩa.
b) Rút gọn C.
c) Tìm các giá trị nguyên của x để giá trị C là số ngueyeenn.
2. Cho biểu thức: \(A=x^2-3x\sqrt{y}+2y\)
a) Phân tích A thành nhân tử.
b) Tính giá trị của A khi: \(x=\frac{1}{\sqrt{6}-2}\); \(y=\frac{1}{9+4\sqrt{5}}\)
3. Rút gọn rồi tính giá trị của biểu thức tại \(x=3\)
\(M=\frac{\sqrt{x-2\sqrt{2}}}{\sqrt{x^2-4x\sqrt{2}+8}}-\frac{\sqrt{x+2\sqrt{2}}}{\sqrt{x^2+4x\sqrt{2}+8}}\)
4. Cho biểu thức: \(\frac{\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}}{\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1}\)với \(x\ge0\)và \(x\:\ne9\)
a) Rút gọn P.
b) Tìm giá trị của x để \(P\:< -\frac{1}{2}\)
c) Tìm giá trị của x để P có giá trị nhỏ nhất.
5. Cho biểu thức:
\(Q=\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)
a) Tìm giá trị của x để Q có nghĩa.
b) Rút gọn Q.
c) Tìm giá trị của của x để Q có giá trị nguyên.
\(A=\frac{1}{1+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{9}}+\frac{1}{\sqrt{9}+\sqrt{13}}+....+\frac{1}{\sqrt{2001}+\sqrt{2005}}+\)\(\frac{1}{\sqrt{2005}+\sqrt{2009}}\)
Rút gọn biểu thức A
\(B=x^3-3x+2000\). Rút gọn B biết \(x=\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\)
Mong mọi người giúp đỡ mình ạ , mình rất cần ạ
1. Trục căn thức ở mẫu:
\(A=\frac{1}{1+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{9}}+\frac{1}{\sqrt{9}+\sqrt{13}}+....+\frac{1}{\sqrt{2001}+\sqrt{2005}}+\frac{1}{\sqrt{2005}+\sqrt{2009}}\)
=\(\frac{\sqrt{5}-1}{4}+\frac{\sqrt{9}-\sqrt{5}}{4}+\frac{\sqrt{13}-\sqrt{9}}{4}+....+\frac{\sqrt{2005}-\sqrt{2001}}{4}+\frac{\sqrt{2009}-\sqrt{2005}}{4}\)
\(=\frac{\sqrt{2009}-1}{4}\)
2/ \(x=\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\)
=> \(x^3=\left(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\right)^3\)
\(=3+2\sqrt{2}+3-2\sqrt{2}+3\left(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\right).\sqrt[3]{3+2\sqrt{2}}.\sqrt[3]{3-2\sqrt{2}}\)
\(=6+3x\)
=> \(x^3-3x=6\)
=> \(B=x^3-3x+2000=6+2000=2006\)
\(A=\frac{1-\sqrt{5}}{1-5}+\frac{\sqrt{5}-\sqrt{9}}{5-9}+\frac{\sqrt{9}-\sqrt{13}}{9-13}+...+\frac{\sqrt{2001}-\sqrt{2005}}{2001-2005}\)
\(A=\frac{1-\sqrt{5}+\sqrt{5}-\sqrt{9}+\sqrt{9}-\sqrt{13}+...+\sqrt{2001}-\sqrt{2005}}{-4}\)
\(A=\frac{1-\sqrt{2005}}{-4}=\frac{\sqrt{2005}-1}{4}\)
a) Tính giá trị biểu thức:
N=\(\frac{\sqrt{15-10\sqrt{2}}+\sqrt{13+4\sqrt{10}}-\sqrt{11+2\sqrt{10}}}{2\sqrt{3+2\sqrt{2}}+\sqrt{9-4\sqrt{2}}+\sqrt{12+8\sqrt{2}}}\)
b)Rút gọn biểu thức:
A=\(\frac{x^3-3x+\left(x^2-1\right)\sqrt{x^2-4}-2}{x^3-3x+\left(x^2-1\right)\sqrt{x^2-4}+2}\),trị x>2
Bài 1 : Rút gọn biểu thức với giả thiết các biểu thức đều có nghĩa
a) A = \(4\sqrt{\frac{25x}{4}}-\frac{8}{3}\sqrt{\frac{9x}{4}}-\frac{4}{3x}\sqrt{\frac{9x^3}{54}}\left(x>0\right)\)
b) B = \(\frac{x}{2}+\frac{3}{4}\sqrt{1-4x+4x^2}-\frac{3}{2}\left(x\le\frac{1}{2}\right)\)
Bài 3 : Giải PT
a) \(\frac{1}{2}\sqrt{x-1}-\frac{3}{2}\sqrt{9x-9}+24\sqrt{\frac{x-1}{64}}=-17\)
b) \(\sqrt{4x^2-9}=2\sqrt{2x+3}\)
c) \(3x-7\sqrt{x}+4=0\)
Bài 4 : Trục căn thức mẫu và rút gọn
a) \(\frac{9}{\sqrt{3}}\)
b) \(\frac{3}{\sqrt{5}-\sqrt{2}}\)
c) \(\frac{\sqrt{2}+1}{\sqrt{2}-1}\)
d) \(\frac{1}{7+4\sqrt{3}}+\frac{1}{7-4\sqrt{3}}\)
Vậy thoiiiii :))) Giúp em với mọi người :")))
B4
a) \(\frac{9}{\sqrt{3}}=\frac{9\cdot\sqrt{3}}{\sqrt{3}\cdot\sqrt{3}}=\frac{9\sqrt{3}}{3}=3\sqrt{3}\)
b)\(\frac{3}{\sqrt{5}-\sqrt{2}}=\frac{3\left(\sqrt{5}+\sqrt{2}\right)}{\left(\sqrt{5}-\sqrt{2}\right)\left(\sqrt{5}+\sqrt{2}\right)}=\frac{3\left(\sqrt{5}+\sqrt{2}\right)}{3}=\sqrt{5}+\sqrt{2}\)
c)\(\frac{\sqrt{2}+1}{\sqrt{2}-1}=\frac{\left(\sqrt{2}+1\right)\left(\sqrt{2}+1\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}=\frac{\left(\sqrt{2}+1\right)^2}{1}=\left(\sqrt{2}+1\right)^2\)
d)\(\frac{1}{7+4\sqrt{3}}+\frac{1}{7-4\sqrt{3}}=\frac{7-4\sqrt{3}+7+4\sqrt{3}}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}=\frac{14}{1}=14\)
B3
a)\(\frac{1}{2}\sqrt{x-1}-\frac{3}{2}\sqrt{9x-9}+24\sqrt{\frac{x-1}{64}}=-17\) \(đk:x\ge1\)
\(\frac{1}{2}\sqrt{x-1}-\frac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)
\(\sqrt{x-1}\cdot\left(\frac{1}{2}-\frac{9}{2}+3\right)=-17\)
\(\sqrt{x-1}\cdot\left(-1\right)=-17\)
\(\sqrt{x-1}=17\)
\(\left[{}\begin{matrix}x-1=289\left(tm\right)\\x-1=-289\left(ktm\right)\end{matrix}\right.\)
\(x=290\left(tm\right)\)
b)\(\sqrt{4x^2-9}=2\sqrt{2x+3}\) \(đk:x\ge-\frac{3}{2}\)
\(\sqrt{\left(2x-3\right)\left(2x+3\right)}-2\sqrt{2x+3}=0\)
\(\sqrt{\left(2x+3\right)}\cdot\left(\sqrt{2x-3}-2\right)=0\)
\(\left[{}\begin{matrix}\sqrt{2x+3}=0\\\sqrt{2x-3}-2=0\end{matrix}\right.\left[{}\begin{matrix}2x+3=0\\\sqrt{2x-3}=2\end{matrix}\right.\left[{}\begin{matrix}x=-\frac{3}{2}\\2x-3=4\left(tm\right)\\2x-3=-4\left(ktm\right)\end{matrix}\right.\left[{}\begin{matrix}x=-\frac{3}{2}\left(tm\right)\\x=\frac{7}{2}\left(tm\right)\end{matrix}\right.\)