a ,tìm số nguyên N để A có giá trị nguyên
b,tìm số nguyên N để A có giá trị lớn nhất
a)Tìm tất cả các số nguyên n để phân số n+1/n-2 có giá trị là một số nguyên
b)
Tìm số nguyên n để phân số 4n+5/2n-1 có giá trị là một số nguyên
a, Để \(\dfrac{n+1}{n-2}\) có giá trị là một số nguyên thì n + 1 ⋮ n - 2
=> (n - 2) + 3 ⋮ n - 2
Vì (n - 2) ⋮ n - 2 nên 3 ⋮ n - 2
=> n - 2 ∈ Ư(3) ∈ {-3;-1;1;3}
=> n ∈ {-1;1;3;5}
b, Để \(\dfrac{4n+5}{2n-1}\) có giá trị là một số nguyên thì 4n + 5 ⋮ 2n - 1
=> (4n - 2) + 7 ⋮ 2n - 1
=> 2(2n - 1) + 7 ⋮ 2n - 1
Vì 2(2n - 1) ⋮ 2n -1 nên 7 ⋮ 2n - 1
=> 2n - 1 ∈ Ư(7) ∈ {-7;-1;1;7}
=> n ∈ {-3;0;1;4}
A= 2n-1/n-3
a) Tìm số nguyên n để A có giá trị nguyên
b) Tìm số nguyên n để A có giá trị lớn nhất
Để A có giá trị nguyên thì 2n-1 chia hết cho n-3
2n-1
=2n-6+5
=2.(n-3)+5
Do 2.(n-3) luôn chia hết cho n-3 nên 5 chia hết cho n-3
n-3 thuộc 1;5;-1;-5
Bạn kẻ bảng ra và thử các trường hợp nhé,sau cùng ta được:
n thuộc 4;8;2;-2
b)Để A có giá trị nguyên lớn nhất thì n lớn nhất ở tử,bé nhất ở mẫu,Tức mẫu bằng 1,suy ra n=4,mẫu không âm được vì nếu âm hoặc cả 2 âm không mang lại giá trị lớn nhất
Cách tốt nhất thử các n ra rồi so sánh giá trị.
Chúc bạn học tốt^^
Để A nguyên thì
2n - 1 chia hết n - 3
<=> 2n - 6 + 5 chia hết n - 3
<=> 2.(n-3) + 5 chia hết n - 3
=> 5 chia hết n - 3
=> n - 3 thuộc Ư(5) = {-1;1;-5;5}
=> n = 2;4;-1;8
Để A nguyên thì
2n - 1 chia hết n - 3
<=> 2n - 6 + 5 chia hết n - 3
<=> 2.(n-3) + 5 chia hết n - 3
=> 5 chia hết n - 3
=> n - 3 thuộc Ư(5) = {-1;1;-5;5}
=> n = 2;4;-1;8
A=n+1/n-2
a)Tìm các số nguyên n để A có giá trị số nguyên
b)Tìm các số nguyên n để A có giá trị lớn nhất
Cho phân số A= 2n-1/ n-3
Tìm số nguyên n để A có giá trị nguyênTìm số nguyên n để A có giá trị lớn nhấtCho p/s A= 2n-1/n-3
A) tìm số nguyên n để A có giá trị nguyên
B) tìm số nguyên n để A có giá trị lớn nhất
a) \(A=\frac{2n-1}{n-3}=\frac{2\left(n-3\right)+5}{n-3}=2+\frac{5}{n-3}\)
Để A nguyên thì \(\frac{5}{n-3}\) phải nguyên
=> n-3 \(\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
=>\(n\in\left\{4;2;8;-2\right\}\)
Cho phân số \(A=\frac{2n-1}{n-3}\)
a) Tìm số nguyên n để A có giá trị nguyên.
b) Tìm số nguyên n để A có giá trị lớn nhất.
a) A \(=\frac{2n-1}{n-3}=\frac{2n-6}{n-3}+\frac{5}{n-3}\) nguyên
<=> n - 3 thuộc Ư(5) = {-5; -1; 1; 5}
<=> n thuộc {-2; 2; 4; 8}
b) A lớn nhất <=> \(\frac{5}{n-3}\) lớn nhất <=> n - 3 là số nguyên dương nhỏ nhất
<=> n - 3 = 1 <=> n = 4
Cho phân số A=\(\frac{2n-1}{n-3}\)
a) Tìm số nguyên n để A có giá trị nguyên
b) Tìm số nguyên n để A có giá trị lớn nhất
A=\(\frac{2n-1}{n-3}\)
a)Để A có giá trị nguyên thì 2n-1 phải chia hết cho n-3
2n-1
=2n-6+6-1
=2.(n-3)+5
n-3 chia hết cho n-3 nên 2(n-3) chia hết cho n-3
Vậy 5 cũng phải chia hết cho n-3
+n-3=1=>n=4
+n-3=5=>n=8
+n-3=-1=>n=2
+n-3=-5=>n=-2
Vậy n thuộc -2;2;8;4
b)Dễ thấy,để A có giá trị lớn nhất n=8
Chúc em học tốt^^
cho A=\(\dfrac{n-6}{n-2}\) với n là số nguyên
a) Tìm điều kiện của n để A là phân số
b) Tìm n để A nhận giá trị là số nguyên âm lớn nhất
c) Tìm n để A nhận giá trị là số tự nhiên
d) Tìm giá trị lớn nhất và giá trị nhỏ nhất của A
hellp!!!
a) Để A là phân số thì : \(n-2\ne0=>n\ne2\)
b) Để A nhận giá trị nguyên âm lớn nhất
\(=>A=-1\\ =>\dfrac{n-6}{n-2}=-1\\ =>n-6=-\left(n-2\right)\\ =>n-6=-n+2\\ =>n+n=6+2\\ =>2n=8\\ =>n=4\left(TMDK\right)\)
c) \(A=\dfrac{n-6}{n-2}=\dfrac{n-2-4}{n-2}=1-\dfrac{4}{n-2}\)
Để A nhận gt số nguyên thì : \(\dfrac{4}{n-2}\in Z=>4⋮\left(n-2\right)\\ =>n-2\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\\ =>n\in\left\{3;1;4;0;6;-2\right\}\)
Đến đây bạn lập bảng giá trị rồi thay từng gt n vào bt A, giá trị nào cho A là STN thì bạn nhận gt đó ạ.
d) Mình nghĩ bạn thiếu đề ạ
cho phân số a= \(\frac{n+1}{n-2}\)
a, tìm số nguyên a để có giá trị nguyên
b, tìm số nguyên n để a có giá trị lớn nhất
a)Để a có giá trị nguyên thì \(\left(n+1\right)⋮\left(n-2\right)\)
\(\Rightarrow\left[\left(n+1\right)-\left(n-2\right)\right]⋮\left(n-2\right)\)
\(\Rightarrow\left(n+1-n+2\right)⋮\left(n-2\right)\)
\(\Rightarrow3⋮\left(n-2\right)\)
\(\Rightarrow n-2\in\){1;3;-1;-3}
\(\Rightarrow n\in\){3;5;1;-1}
Vậy với n\(\in\){3;5;1;-1} thì a có giá trị nguyên.