cho tam giác ABC cân tại a đường phân giác BD và CE cắt nhau tại D a) chứng minh BD=CE b) DE song song BC c) gọi H là điểm chung của BC chứng minh AOH thẳng hàng
Cho tam giác ABC cân tại A(góc A=90).có BD ,CE là hai đường cao của tam giác(D thuộc AC,E thuộc AB).đường thẳng BD cắt CE tại H
a. Chứng minh BD=CE
b. Chứng minh tam giác ADE cân và DE song song với BC
c. Gọi M là trung điểm của BC. Chứng minh 3 điểm A,H,M thẳng hàng
Giúp mình vẽ hình và giải bài toán với ạ
Cho tam giác ABC có AB < AC. Gọi Ax là tia phân giác góc A. Qua trung điểm M của BC kẻ đường thẳng vuông góc với Ax, cắt các đường thẳng AB, AC lần lượt tại D và E a) Chứng minh tam giác ADE cân b) Qua B kẻ đường thẳng song song với AC, cắt DE tại F. Chứng minh BD = BF. c) Chứng minh BD = CE
a: Xét ΔADE có
AG vừa là đường cao, vừa là phân giác
nên ΔADE cân tại A
=>AD=AE
b: góc BFD=góc DEA
góc BDF=góc BEA
Do đo: góc BFD=góc BDF
=>ΔBFD cân tại B
c: Xét ΔBMF và ΔCME có
góc BMF=góc CME
MB=MC
góc MBF=góc MCE
Do đó: ΔBMF=ΔCME
=>BF=CE=BD
Cho tam giác ABC có AB < AC. Gọi Ax là tia phân giác góc A. Qua trung điểm M của BC kẻ đường thẳng vuông góc với Ax, cắt các đường thẳng AB, AC lần lượt tại D và E.
a) Chứng minh tam giác ADE cân.
b) Qua B kẻ đường thẳng song song với AC, cắt DE tại F. Chứng minh BD = BF.
c) Chứng minh BD = CE.
a: Xét ΔADE có
AG vừa là đường cao, vừa là phân giác
nên ΔADE cân tại A
=>AD=AE
b: góc BFD=góc DEA
góc BDF=góc BEA
Do đo: góc BFD=góc BDF
=>ΔBFD cân tại B
c: Xét ΔBMF và ΔCME có
góc BMF=góc CME
MB=MC
góc MBF=góc MCE
Do đó: ΔBMF=ΔCME
=>BF=CE=BD
Cho tam giác ABC có AB < AC. Gọi Ax là tia phân giác góc A. Qua trung điểm M của BC kẻ đường thẳng vuông góc với Ax, cắt các đường thẳng AB, AC lần lượt tại D và E. a) Chứng minh tam giác ADE cân. b) Qua B kẻ đường thẳng song song với AC, cắt DE tại F. Chứng minh BD = BF. c) Chứng minh BD = CE.
Cho tam giác ABC có AB < AC. Gọi Ax là tia phân giác góc A. Qua trung điểm M của BC kẻ đường thẳng vuông góc với Ax, cắt các đường thẳng Ab, AC lần lượt tại D và E.
a, Chứng minh tam giác ADE cân
b, Qua B kẻ đường thẳng song song với AC, cắt DE tại F. Chứng minh BD = BF
c, Chứng minh BD = CE
Cho tam giác ABC cân tại A có góc A bằng 90 độ . Vẽ BD vuông góc tại D CE vuông góc AB tại E .Gọi I là giao điểm của BD và CE.
a)Chứng minh AD=AE
b)chứng minh AI là tia phân giác của góc BAC
c)Chứng minh DE song song với BC
d)Gọi M là trung điểm cạnh BC . Chứng minh ba điểm A,I,M thẳng hàng
Cho tam giác ABC cân tại A. Qua A vẽ xy song song với BC, xy cắt tia phân giác của góc B và góc C lần lượt tại D và E.
a) Chứng minh Ax là tia phân giác ngoài của tam giác ABC tại A
b) Chứng minh A là trung điểm của DE
c) Chứng minh tam giác CED vuông
d) Chứng minh 3 đường thẳng BD, CE, FA đồng quy (biết EB và DC cắt nhau tại F)
Cho tam giác ABC vuông cân tại A, kẻ d đi qua A không cắt đoạn BC (không cắt đoạn thôi chứ không phải song song). Từ B và C kẻ BD và CE cùng vuông góc với d
a) Chứng minh BC // CE
b) Chứng minh tam giác ADB bằng tam giác CEA
c) Chứng minh BD + CE = DE
d) Gọi M là trung điểm BC. Chứng minh tam giác DAM = tam giác ECM và tam giác DME vuông cân