Cho A=n2+1 với giá trị nào của n thì A chia hết cho 2
cho tổng S =a +a^2+a^3+a^4+...+a^n .với giá trị nào của n thì S chia hết cho a+1
Ta thấy:
\(a+a^2=a.\left(a+1\right)⋮a+1\)
\(a^3+a^4=a^3.\left(a+1\right)⋮a+1\)
...
Như vậy, cứ 2 số trong tổng S thì có tổng chia hết cho a + 1
Do đó, với n chẵn thì S chia hết cho a + 1
Ta thấy:
a+a^2=a.\left(a+1\right)⋮a+1
a^3+a^4=a^3.\left(a+1\right)⋮a+1
...
Như vậy, cứ 2 số trong tổng S thì có tổng chia hết cho a + 1
Do đó, với n chẵn thì S chia hết cho a + 1
Cho tổng S=a+a^2+a^3+a^4+...+a^n. Với giá trị nào của n thì S chia hết cho a+1(a khác 0)
cho A= [n/2]+[n+1/2] B= [n/3]+[n+1/3]+[n+2/3] với giá trị nào của n thuộc Z thì a, Achia hết 2 b, B chia hết 3
cho S= a+a^2+a^3+...+a^n ( n thuộc N ). Với giá trị nào thì S chia hết cho a+1 (a khác -1)
Cho tổng S= a+a^2+a^3+a^4+...+a^n (n thuộc N)
Với giá trị nào của n thì S chia hết cho a+1
Ta thấy:
a+a^2=a.\left(a+1\right)⋮a+1
a^3+a^4=a^3.\left(a+1\right)⋮a+1
...
Như vậy, cứ 2 số trong tổng S thì có tổng chia hết cho a + 1
Do đó, với n chẵn thì S chia hết cho a + 1
Cho \(A=\left[\frac{n}{2}\right]+\left[n+\frac{1}{2}\right];B=\left[\frac{n}{3}\right]+\left[n+\frac{1}{3}\right]+\left[n+\frac{2}{3}\right]\)với giá trị nào của n thuộc Z thì :
a) A chia hết cho 2 ; b) B chia hết cho 3
Cho A = [n/2]+[(n+1)/2] ; B=[n/3]+[(n+1)/3]+[(n+2)/3]
với giá trị nào của n thuộc Z thì
a , A chia hết cho 2 ; b,B chia hết cho 3
*chú ý : [a] có nghĩa là phần nguyên của a
Cho A = [n/2]+[(n+1)/2] ; B=[n/3]+[(n+1)/3]+[(n+2)/3]
với giá trị nào của n thuộc Z thì
a , A chia hết cho 2 ; b,B chia hết cho 3
*chú ý : [a] có nghĩa là phần nguyên của a