1999 nhân 2000-1 / 1998+1999nhân2000
nhân 7/5 = ?
giúp mình nha
1/2000*1999 - 1/1999*1998 - 1/1998*1997 - ... - 1/2*1
* là nhân
Giúp với
1/2000*1999 - 1/1999*1998 - 1/1998*1997 - ... - 1/2*1
= 1/1999 - 1/2000 - (1/1998 - 1/1999) - (1/1997 - 1/1998) - ... - (1 - 1/2)
= 1/1999 - 1/2000 - 1/1998 + 1/1999 - 1/1997 +1/1998 - .... - 1 + 1/2
= 1/1999 + 1/1999 - 1/2000 - 1/1998 + 1/1998 - 1/1997 +1/1997 - .... - 1/2 +1/2 - 1
= 1/1999 + 1/1999 - 1/2000 - 1
= 2/1999 - 1 - 1/2000
= -1997/1999 - 1/2000
= -2000 - 1997/1997*2000
=-3997/3994000
=
Ti´nh nhanh
1999 x 2001 -1 x 7
1998 x 1999 x 2000 5
Nhân voi 7/5 nha.
giup giai voi
Xét vế 1999×2001-1/1998×1999×2000
=1999×(1998+3)-1/1998×1999×2000
=1999×1998+1999×3-1/1998×1999×2000
=1999×1998+5996/1998×1999×2000
Sai đề rồi bạn ơi
Tính nhanh
1999 × 2001 - 1 /1998 + 1999 ×2000 × 7/5
Các bạn ghi lời giải chi tiết giúp mình với
Tính:
A = 21 - 23 + 25 - 27 + ... + 2021 - 2023
B = 1 - 2 - 3 + 4 + 5 - 6 - 7 + ... + 1997 - 1998 - 1999 + 2000
Giúp mình với
Lời giải:
$A=(21-23)+(25-27)+....+(2021-2023)$
$=(-2)+(-2)+...+(-2)$
Số lần xuất hiện của $-2$ là: $[(2023-21):2+1]:2=501$
$A=501(-2)=-1002$
$B=(1-2-3+4)+(5-6-7+8)+....+(1997-1998-1999+2000)$
$=0+0+0+...+0=0$
tính
1phần 2 nhân 2 phần 3 nhân 3 phần 4......nhân 1998 phần 1999 nhân 1999 phần 2000
có phải ý bạn là:
\(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{1998}{1999}.\frac{1999}{2000}\)=\(\frac{1.2.3....1998.1999}{2.3.4....1999.2000}\)=\(\frac{1}{2000}\)
( bạn xóa những số có cả ở trên tử và mẫu-câu này mình chỉ giảng thôi)
\(\frac{1}{2}\cdot\frac{2}{3}\cdot...\cdot\frac{1999}{2000}=\frac{1\cdot2\cdot...\cdot1999}{2\cdot3\cdot...\cdot2000}=\frac{1}{2000}\)
Để bước 2 thành bước 3 là mình rút gọn nha.
\(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{1998}{1999}.\frac{1999}{2000}\) =\(\frac{1}{2000}\) ( gạch mẫu số trước cho tử số sau)
Mik ko bt làm bài này , các bn giúp mik nha !!!
a, 1-2-3+4+5-6-7+....+1996+1881-1998-1999+2000+2001
b, 1-3+5-7+.....+2001-2003+2005
Nha !!!!. Giúp mik nha ~~~~
a, 1 - 2 - 3 + 4 + 5 + 6 - 7 + ... + 1996 + 1997 - 1998 - 1999 + 2000 + 2001
= ( 1 - 2 - 3 + 4 ) + ( 5 - 6 - 7 + 8 ) + ... +( 1993 - 1994 - 1995 + 1996 ) + ( 1997 - 1998 - 1999 + 2000 ) + 2001
= 0 + 0 + ... + 0 + 0 + 2001
= 2001
b, 1 - 3 + 5 -7 + ...+ 2001 - 2003 + 2005
= ( 1 -3 ) + ( 5 - 7 ) + ... + ( 2001 - 2003 ) + 2005
= -2 + (-2 )+ ... + (-2) + 2005
Có 501 số ( - 2 )
= ( - 2 ) . 501 + 2005
= -1002 + 2005
= 1003
P/s : Tham khảo ( Chép đầu bài thôi cũng sai )
a, 1 - 2 - 3 + 4 + 5 + 6 - 7 + ... + 1996 + 1997 - 1998 - 1999 + 2000 + 2001
= ( 1 - 2 - 3 + 4 ) + ( 5 - 6 - 7 + 8 ) + ... +( 1993 - 1994 - 1995 + 1996 ) + ( 1997 - 1998 - 1999 + 2000 ) + 2001
= 0 + 0 + ... + 0 + 0 + 2001
= 2001
b, 1 - 3 + 5 -7 + ...+ 2001 - 2003 + 2005
= ( 1 -3 ) + ( 5 - 7 ) + ... + ( 2001 - 2003 ) + 2005
= -2 + (-2 )+ ... + (-2) + 2005
= ( - 2 ) . 501 + 2005
= -1002 + 2005
= 1003
Tính ;
a ) 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + ..... + 1998 - 1999 - 2000 + 2001
b ) 1 - 3 + 5 - 7 + 9 - .... - 1999 + 2001
c ) 1 + 2 + 3 - 4 + 5 + 6 + 7 - 8 + ... + 1999 - 2000 + 2001
d ) B = 1 - 7 + 13 -19 + 25 - 31 + .....; biết B có 2007 số hạng .
Giúp mik nha ! mik đang cần gấp !
Bạn nào trả lời đầy đủ , rõ ràng , và nhớ phải chính xác !
Thì mik like cho nha !
a, S = 1 + 2 - 3 - 4 +5 +6 - 7 - 8 +..... +1998 -1999 -2000 +2001
=> S = (1-3)+(2-4)+(5-7)+(6-8)+...+(1997-1999)+... + 2001 ( có 1000 hiệu = -2 )
=> S = -2 x 1000 + 2001 = 1
b, S = 1 - 3 + 5 - 7 + 9 - .... - 1999 + 2001
=> S = (1-3)+(5-7)+(9-11)+....+(1997-1999) + 2001( có 500 hiệu = -2 )
=> S = -2 x 500 + 2001 = 1001
mình chỉ lmf dc 2 câu đầu thông cảm nha
Cho A= 2000/1 +1999/2 + 1998/3 +.... +1/2000 +2000
B= 1+ 1/2 +1/3 +1/4+..... +1/2000
Tính A/B
Các bn giúp mình với nha mình đang cần gấp. Cảm ơn ạ
Cho A= 2000/1 +1999/2 + 1998/3 +.... +1/2000 +2000
B= 1+ 1/2 +1/3 +1/4+..... +1/2000
Tính A/B
Các bn giúp mình với nha mình đang cần gấp. Cảm ơn ạ
Ta có:
\(\frac{A}{B}=\frac{\frac{2000}{1}+\frac{1999}{2}+\frac{1998}{3}+...+\frac{1}{2000}+2000}{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}\)
\(\Leftrightarrow\frac{A}{B}=\frac{\left(\frac{2000}{1}+1\right)+\left(\frac{1999}{2}+1\right)+\left(\frac{1998}{3}+1\right)+...+\left(\frac{1}{2000}+1\right)+2000+1}{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}\)
\(\Leftrightarrow\frac{A}{B}=\frac{\frac{2001}{1}+\frac{2001}{2}+\frac{2001}{3}+...+\frac{2001}{2000}+2001}{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}\)
\(\Leftrightarrow\frac{A}{B}=\frac{2001\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}\right)}{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}\)
\(\Leftrightarrow\frac{A}{B}=2001\)