Tìm x:
|x+1/1.3|+|x+1/3.5|+|x+1/5.7|+...+|x+1/97.99|
Tìm x
1/x-1/9999=1/1.3+1/3.5+1/5.7+...+1/97.99
tìm x : \(\frac{1}{x}-\frac{1}{9999}=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)
\(\frac{1}{x}-\frac{1}{9999}=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)
\(\frac{1}{x}-\frac{1}{9999}=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(\frac{1}{x}-\frac{1}{9999}=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{99}\right)\)
\(\frac{1}{x}-\frac{1}{999}=\frac{1}{2}.\frac{98}{99}\)
\(\frac{1}{x}-\frac{1}{9999}=\frac{49}{99}\)
\(\frac{1}{x}=\frac{49}{99}+\frac{1}{9999}\)
\(\frac{1}{x}=\frac{50}{101}\)
\(x=1:\frac{50}{101}\)
\(x=\frac{101}{50}\)
Vậy \(x=\frac{101}{50}\)
Tìm x
5/1.2+5/2.3+...+5/99.100 - 2x=1/1.3+1/3.5+1/5.7+...1/97.99
\(\frac{5}{1.2}+\frac{5}{2.3}+...+\frac{5}{99.100}-2x=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)
\(5\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)-2x=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\right)\)
\(5\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)-2x=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)\(5\left(1-\frac{1}{100}\right)-2x=\frac{1}{2}\left(1-\frac{1}{99}\right)\)
\(5.\frac{99}{100}-2x=\frac{1}{2}.\frac{98}{99}\)
\(\frac{99}{20}-2x=\frac{49}{99}\)
\(2x=\frac{99}{20}-\frac{49}{99}\)
\(2x=\frac{8821}{1980}\)
\(x=\frac{8821}{1980}:2\)
\(x=\frac{8821}{3960}\)
tìm x biết x/1.3+x/3.5+x/5.7+.........+x/97.99=49/99
\(\frac{x}{1.3}+\frac{x}{3.5}+\frac{x}{5.7}+....+\frac{x}{97.99}=\frac{49}{99}\)
\(\Leftrightarrow\frac{x}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{97}-\frac{1}{99}\right)=\frac{49}{99}\)
\(\Leftrightarrow\frac{x}{2}.\left(\frac{1}{1}-\frac{1}{99}\right)=\frac{49}{99}\)
\(\Leftrightarrow\frac{x}{2}.\frac{98}{99}=\frac{49}{99}\)
\(\Leftrightarrow\frac{x}{2}=\frac{49}{99}\div\frac{98}{99}\)
\(\Leftrightarrow\frac{x}{2}=\frac{1}{2}\)
\(\Leftrightarrow x=\frac{1}{2}\times2=1\)
\(\frac{x}{1\cdot3}+\frac{x}{3\cdot5}+...+\frac{x}{97\cdot99}=\frac{49}{99}\)
\(\Rightarrow\frac{x}{2}\left[\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+...+\frac{1}{97\cdot99}\right]=\frac{49}{99}\)
\(\Rightarrow\frac{x}{2}\left[\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\right]=\frac{97}{99}\)
\(\Rightarrow\frac{x}{2}\left[1-\frac{1}{99}\right]=\frac{49}{99}\)
\(\Rightarrow\frac{x}{2}\cdot\frac{98}{99}=\frac{49}{99}\)
\(\Rightarrow\frac{x}{2}=\frac{1}{2}\)
=> x = 1/2 * 2 = 1
x-(1/1.3)-(1/3.5)-(1/5.7)-...-(1/97.99)=5/6
Giúp mk vs mk đg gấp lm ạ
#Ngọc_Hà_Cute
x-1/2*(1/1-1/3)-(1/3-1/5)-...-1/97-1/99=5/6
x-1/2*(1-1/99)=5/6
x-1/2*98/99=5/6
x-49/59=5/6
x=5/6+49/59=263/198
Cho A = 2/1.3 + 2/3.5 + 2/5.7 + 2/7.9 +.....+ 2/97.99 và B = 1^2 / 1.2 x 2^2/2.3 x 3^2 / 3.4 x 4^2 /4.5 x .... x 98^2 / 98.99. Chứng tỏ A = 98B
Ta có :\(B=\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.\frac{4^2}{4.5}.....\frac{98^2}{98.99}=\frac{\left(1.2.3.4...98\right).\left(1.2.3.4...98\right)}{\left(1.2.3.4...98\right).\left(2.3.4.5...99\right)}=\frac{1}{99}\)
Lại có A = \(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{97.99}=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}=1-\frac{1}{99}=\frac{98}{99}\)
Lại có \(A:B=\frac{98}{99}:\frac{1}{99}=98\)
=> A = 98B
các bạn có về sweet home
Tìm x biết 1/1.3+1/3.5+1/5.7+...+1/x.(x+2)=1005/2011
Gọi \(A=\frac{1005}{2011}\)
A=1/3 + 1/3.5 + 1/5.7 +...............+1/x.(x+2)
A=1/1.3 + 1/3.5 + 1/5.7 +...............+1/x.(x+2)
A . 2=2/1.3 + 2/3.5 + 2/5.7 +......................+2/x.(x+2)
A . 2=1/1-1/3+1/3-1/5+1/5-1/7+..............+1/x-1/x+2
A . 2=1/1+(1/3-1/3)+(1/5-1/5)+..............+(1/x-1/x)-1/x+2
A . 2=1/1-1/x+2
Suy gia:1005/2011 . 2=1/1-1/x+2
2010/2011 =1/1-1/x+2
1/x+2 =1/1-2010/2011
1/x+2 =1/2011
Suy gia:x+2=2011
x =2011-2
x =2009
Tìm x biết
1/1.3 + 1/3.5 + 1/5.7 +....+ 1/x(x+1) = 20/41
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{x\left(x+2\right)}=\frac{20}{41}\)
\(\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{x\left(x+2\right)}\right)=\frac{20}{41}\)
\(\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{20}{41}\)
\(\frac{1}{2}\left(1-\frac{1}{x+2}\right)=\frac{20}{41}\)
\(\frac{1}{2}.\frac{x+1}{x+2}=\frac{20}{41}\)
\(\frac{x+1}{x+2}=\frac{20}{41}:\frac{1}{2}\)
\(\frac{x+1}{x+2}=\frac{40}{41}\)
\(x+1=40
\)
\(x=40-1\)
\(x=39\)
Đúng thì ****
Lương Hồ Khánh Duy trả lời đúng nhưng đúng cảu bài khác
Ở đây, câu hỏi ghi x+1 bn ghi x+2
Trần Quang Trường, Lương Hồ Khánh Duy đã trả lời đúng rồi , nếu câu hỏi như bạn nói thì phép tính ko như quy luật của nó
Tìm x biết:'
1/1.3+1/3.5+1/5.7+.........+1/2003.2005=1/x