Cho tứ giác ABCD. C/ minh:
a) \(AB< BC+CD+AD\)
b)\(AC+BD< AB+BC+CD+AD\)
cho tứ giác ABCD
a) CM AC+BD>1/2(AB+BC+CD+AD)
b) CM AC+BD>AB+BC+CD+AD
a) Gọi \(O\)là giao điểm \(AC\)và \(BD\).
Theo bất đẳng thức tam giác ta có:
\(OA+OB>AB,OB+OC>BC,OC+OD>CD,OD+OA>AD\)
Cộng lại vế theo vế ta được:
\(2\left(OA+OB+OC+OD\right)>AB+BC+CD+DA\)
\(\Leftrightarrow AC+BD>\frac{1}{2}\left(AB+BC+CD+DA\right)\).
b) Theo bất đẳng thức tam giác:
\(AC< AB+BC,AC< CD+DA,BD< AB+DA,BD< BC+CD\)
Cộng lại vế theo vế ta được:
\(2\left(AC+BD\right)< 2\left(AB+BC+CD+DA\right)\)
\(\Leftrightarrow AC+BD< AB+BC+CD+DA\).
cho tứ giác ABCD .chứng minh :
a) AB<BC+CD+AD
b)AC+BD<AB+BC+CD+AD
Câu 17:. Chọn câu đúng:
A. Tứ giác ABCD là hình chữ nhật khi có và .
B. Tứ giác ABCD là hình chữ nhật khi có và .
C. Tứ giác ABCD là hình chữ nhật khi có AB=CD; AD=BC; AC=BD.
D. Tứ giác ABCD là hình chữ nhật khi có AB=CD; AB=BC và AC=BD.
Giúp e với ạ :((
cho tứ giác ABCD. Chứng minh:
a AB<BC+CD+AD
b, AC+BD<AB+BC+CD+AD
bài 5 : tứ giác abcd có ab+bd< hoặc =ac+cd
chứng minh :ab<ac
bài 6 :cho tứ giác abcd .chứng minh :
a) ab<bc+cd+ad b) ac+bd<ab+bc+cd+ad
Cho tứ giác ABCD có AB = 3cm, BC = 10cm, CD = 12cm, AD = 5cm và BD =6cm. Chứng minh:a) Tam giác ABD đồng dạng với tam giác BDC.b) ABCD là hình thang.
Cho tứ giác ABCD có AB=3cm. BC=10cm, CD=12cm. AD = 5cm và BD=6cm. Chứng minh:
a) Tam giác ABD đồng dạng với tam giác BDC.
b) ABCD là hình thang.
a: Xét ΔABD và ΔBDC có
\(\dfrac{AB}{BD}=\dfrac{BD}{DC}=\dfrac{AD}{BC}\left(\dfrac{3}{6}=\dfrac{6}{12}=\dfrac{5}{10}\right)\)
Do đó: ΔABD~ΔBDC
b: Ta có: ΔABD~ΔBDC
=>\(\widehat{ABD}=\widehat{BDC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//DC
=>ABCD là hình thang
Cho tứ giác ABCD nội tiếp đường tròn. Đặt AB = a; AD = b; CD = c; BC = d.
Chứng minh rằng \(\frac{ab+cd}{ad+bc}=\frac{AC}{BD}\)
+) Dễ có tam giác OAB đồng dạng với tam giác ODC (góc AOB = DOC do đối đỉnh; góc BAC = BDC do góc nội tiếp cùng chắn cung BC)
=> \(\frac{OA}{OD}=\frac{OB}{OC}=\frac{AB}{DC}=\frac{a}{c}\)
+) Tương tự, tam giác OAD đồng dạng với tam giác OBC (g - g)
=> \(\frac{OA}{OB}=\frac{OD}{OC}=\frac{AD}{BC}=\frac{b}{d}\)
+) Ta có: \(\frac{OB}{OC}+\frac{OD}{OC}=\frac{a}{c}+\frac{b}{d}=\frac{ad+bc}{cd}\)=> \(\frac{OB+OD}{OC}=\frac{BD}{OC}=\frac{ad+bc}{cd}\Rightarrow\frac{OC}{BD}=\frac{cd}{ad+bc}\) (1)
+) ta có: \(\frac{OA}{OD}=\frac{a}{c};\frac{OA}{OB}=\frac{b}{d}\Rightarrow\frac{OD}{OA}=\frac{c}{a};\frac{OB}{OA}=\frac{d}{b}\)
=> \(\frac{OD}{OA}+\frac{OB}{OA}=\frac{BD}{OA}=\frac{c}{a}+\frac{d}{b}=\frac{bc+ad}{ab}\Rightarrow\frac{OA}{BD}=\frac{ab}{bc+ad}\)(2)
Từ (1)(2) => \(\frac{OC}{BD}+\frac{OA}{BD}=\frac{cd+ab}{ad+bc}\Rightarrow\frac{AC}{BD}=\frac{ab+cd}{ad+bc}\)
Cho tứ giác ABCD. Chứng minh: a) AB< BC + CD + AD b) AC + BD <AB + BC + CD + AD
Giúp mk vs