Chứng minh rằng : Biết 12 + 22 + 32 + ... + 102 = 385
Tính nhanh: S = 1002 + 2002 + 3002 + .. + 10002
Đố: Biết rằng 12 + 22 + 32 + ... + 102 = 385, đố em tính nhanh được tổng:
S = 22 + 42 + 62 + ... + 202
S = 22 + 42 + 62 + ... + 202
= (2.1)2 + (2.2)2 + (2.3)2 ... (2.10)2
= 22.12 + 22.22 + 22.32 + ... + 22.102
= 22 (12 + 22 + ... + 102 )
= 4 . 385 = 1540
Biết rằng 12 + 22 + 32 +…+ 102 = 385, đố em tính nhanh được tổng S = 22 + 42 + 62 + … + 202
GIÚP MÌNH NHA,MÌNH K CHO!!!
Ta có : \(1^2+2^2+3^2+.....+10^2=385\)
\(\Leftrightarrow2^2\left(1^2+2^2+3^2+.....+10^2\right)=2^2.385\)
\(\Leftrightarrow2^2+4^2+6^2+.....+20^2=4.385\)
\(\Leftrightarrow2^2+4^2+6^2+.....+20^2=1540\)
Sửa đề: CHo 12+22+...+102=385. Tính S = 22+42 +...+ 202
S = 22 + 42 +...+ 202
= (1.2)2 + (2.2)2 +...+ (2.10)2
= 12.22 + 22.22 +...+ 22.102
= 22(12 + 22 +...+ 102)
= 4.385
= 1540
S= 1^2 . 2^2 + 2^2 . 2^2 + ... + 10^2 . 2^2
= 4. ( 1^2 + 2^2 +...+ 10^2) = 4 . 385 = 1540
chúc bạn học giỏi
Cho biết: 1 2 + 2 2 + 3 2 + . . . + 10 2 = 385
Tính nhanh giá trị của biểu thức sau S = 12 2 + 14 2 + 16 2 + 18 2 + 20 2 - 1 2 + 3 2 + 5 2 + 7 2 + 9 2
A. 1155
B. 5511
C. 5151
D. 1515
biết:12+22+32+...+102=385.Tính tổng S=22+42+62+...+202
Ta có \(2^2+4^2+...+20^2=2^2\left(1^2+2^2+...+10^2\right)=2^2.385=1540\).
Ta có 12 + 22 + 32 + …102 = 385
Suy ra ( 12 +22 + 32 +…+102 ) .32 = 385.32
Do đó ta tính được A = 32 + 62 + 92 + …+302 = 3465
Ta có 12 + 22 + 32 + …102 = 385
Suy ra ( 12 +22 + 32 +…+102 ) .32 = 385.32
Do đó ta tính được A = 32 + 62 + 92 + …+302 = 3465
Bài 6. (Trang 23 SGK Toán 7 tập 1) Biết rằng 1 2 + 2 2 + 3 2 +…+ 102 = 385, đố em tính nhanh được tổng S = 2 2 + 4 2 + 6 2 + … + 202
Đạt A=2^2+4^2+6^2+...+20^2
A=2^2X(1^2+2^2+3^2+...+10^2) (1)
Mà 1^2+2^2+3^2+...+10^2=385(2)
Thay (2) vào (1), có: A=2^2x385
A=4X385=1540
Vậy 2^2+4^2+6^2+...+20^2 = 1540
A=2^2X(1^2+2^2+3^2+...+10^2) (1)
Mà 1^2+2^2+3^2+...+10^2=385(2)
Thay (2) vào (1), có: A=2^2x385
A=4X385=1540
Vậy 2^2+4^2+6^2+...+20^2 = 1540
chứng minh
1/22+1/32+1/42+1/52+...+1/1002 >3/4
Tính nhanh :
a) 1272 + 146 . 127 + 732
b) 98 . 28 - (184 - 1)(184+1)
c) 1002 - 992 + 982 - 982 + ... + 22 - 12
d) (202 + 182 + 162 + ... + 42 + 22) - (192 + 172 + ... + 32 + 12)
a) \(=\left(127+73\right)^2=200^2=40000\)
b) \(=18^8-\left(18^8-1\right)=1\)
c) \(=\left(100+99\right)\left(100-99\right)+\left(98+97\right)\left(98-97\right)+...+\left(2+1\right)\left(2-1\right)\)
\(=100+99+98+97+...+2+1=5050\)
d) biến đổi thành \(20^2-19^2+18^2-17^2+..+2^2-1^2\)
rồi giải ra như trên
Chứng minh rằng:
a)1281+255 chia hết cho 10.
b)20022004-10021000 chia hết cho 10.
Chứng minh rằng:
A = 1/3 + 1/32 + 1/33 + ..........+ 1/399 < 1/2
B = 3/12x 22 + 5/22 x 32 + 7/32 x 42 +............+ 19/92 x 102 < 1
C = 1/3 + 2/32 + 3/33 + 4/34 +.........+ 100/3100 ≤ 0
\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{99}}\)
\(\Rightarrow\dfrac{A}{3}=\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\)
\(\Rightarrow A-\dfrac{A}{3}=\dfrac{2A}{3}=\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\dfrac{2A}{3}=\left(\dfrac{1}{3^2}-\dfrac{1}{3^2}\right)+\left(\dfrac{1}{3^3}-\dfrac{1}{3^3}\right)+...+\left(\dfrac{1}{3^{99}}-\dfrac{1}{3^{99}}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)=\dfrac{1}{3}-\dfrac{1}{3^{100}}\)
\(\Rightarrow2A=3\cdot\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\text{A}=\dfrac{1-\dfrac{1}{3^{99}}}{2}\)
\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2.3^{99}}< \dfrac{1}{2}\)