Tìm 2 số tự nhiên a,b (a lớn hơn b)
ƯCLN(a,b) = 45 và a = 270
Tìm 2 số tự nhiên a và b(a lớn hơn b):
a+b=120 và ƯCLN(a,b)=12
Lời giải:
Vì $ƯCLN(a,b)=12, a>b$ nên đặt $a=12x, b=12y$ với $x,y$ là stn, $x>y$, $(x,y)=1$.
Ta có:
$a+b=12x+12y=120$
$\Rightarrow 12(x+y)=120$
$\Rightarrow x+y=10$
Mà $x>y, (x,y)=1$ nên $x,y$ có thể nhận các giá trị là:
$(x,y)=(9,1), (7,3)$
$\Rightarrow (a,b)=(108, 12), (84,36)$
Tìm hai số tự nhiên a và b (a lớn hơn b):
a=96 và ƯCLN(a,b) =12
Tìm hai số tự nhiên a và b ( a > b ) biết rằng a + b = 270 và ƯCLN ( a , b ) = 45
Tham khảo :
Câu hỏi của thang Tran - Toán lớp 6 - Học toán với OnlineMath
Bài 1 Tìm các số tự nhiên a và b biết :
a, a - b = c và ƯCLN(a,b) = 16
b,a - b = 90 và ƯCLN(a,b) = 15
c, ab = 294 và ƯCLN (a,b) =7
Bài 2 Tìm số tự nhiên n biết rằng trong ba số 6 , 16, n bất kì số nào cũng là ước của hai số kia
Bài 3 Tìm số tự nhiên lớn nhất có 3 chữ số biết rằng chia nó cho 10 thì dư 3 chia nó cho 12 thì dư 5 chia nó cho 15 thì dư 8 và nó chia hết cho 19
Bài 4 Tìm số tự nhiên nhỏ nhất để khi chia cho 5 ; 8 ; 12 thì số dư theo thứ tự là 2 ; 6 ; 8
Bạn nào trả lời nhanh nhất đủ cả 4 bài đầy đủ lời giải mình like
cho hai số tự nhiên a và b (a<b). Tìm tổng các phân số tối giản có mẫu bằng 7, mỗi phân số lớn hơn a nhưng nhỏ hơn b
cho hai số tự nhiên a và b (a<b). Tìm tổng các phân số tối giản có mẫu bằng 7, mỗi phân số lớn hơn a nhưng nhỏ hơn b
Tìm hai số tự nhiên biết:
A,a.b=4320va BCNN(a,b)=360
B,a.b=24300 và ƯCLN(a,b)=45
b) Ta có: ƯCLN(a,b) = 45
=> a = 45k; b = 45n
=> a.b = 45k.45n = 2025kn
=> kn = 24300 : 2025 = 12
Vậy k;n xảy ra hai trường hợp
TH1: k = 1; n = 12 (hoặc ngược lại)
TH2: k = 2; n = 6 (hoặc ngược lại)
Tìm số tự nhiên a và b biết a+b=224 và ƯCLN(a,b)=56
Tìm 2 số tự nhiên a,b biết +ƯCLN(a,b)=13 và BCNN(a,b)=195