Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phương Thảo Nhi
Xem chi tiết
Vu Thao
Xem chi tiết
Thảo Phương Nguyễn
Xem chi tiết
Trần Xuân Mai
Xem chi tiết
Nguyễn Như Anh
Xem chi tiết
hương gaing
Xem chi tiết
Jennie Kim
24 tháng 7 2019 lúc 15:21

\(B=\frac{6n-5}{3n+1}\inℤ\)

=> 6n - 5 ⋮ 3n + 1

=> 6n + 2 - 7 ⋮ 3n + 1

=> 3(3n + 1) - 7 ⋮ 3n + 1

=> 7 ⋮ 3n + 1

=> 3n + 1 thuộc Ư(7)

=> 3n + 1 thuộc {-1; 1; -7; 7}

=> 3n thuộc {-2; 0; -8;  6}

=> n thuộc {0; 2} vì n thuộc Z

Xyz OLM
24 tháng 7 2019 lúc 15:31

a) Để \(B\inℤ\)

\(\Rightarrow\left(6n-5\right)⋮\left(3n+1\right)\)

\(\Rightarrow\left(6n+2-7\right)⋮\left(3n+1\right)\)

\(\Rightarrow2.\left(3n+1\right)-7⋮\left(3n+1\right)\)

Vì \(2.\left(3n+1\right)⋮\left(3n+1\right)\)

nên \(-7⋮3n+1\)

\(\Rightarrow3n+1\inƯ_{\left(-7\right)}\)

\(\Rightarrow3n+1\in\left\{1;-1;7;-7\right\}\)

Lập bảng xét 4 trường hợp ta có : 

\(3n+1\)\(1\)\(-1\)\(7\)\(-7\)
\(n\)\(0\)\(-\frac{2}{3}\)\(2\)\(-\frac{8}{3}\)

Vậy \(n\in\left\{0;2\right\}\)

Để \(B\in Z\)

\(6n-5⋮3n+1\)

\(6n+2-7⋮3n+1\)

\(3\left(3n+1\right)-7⋮3n+1\)

Mà \(3\left(3n+1\right)⋮3n+1\)

\(\Rightarrow-7⋮3n+1\)

\(\Rightarrow3n+1\inƯ\left(-7\right)=\left\{\mp1;\mp7\right\}\)

Lập bảng xét giá trị là xong 

Lã Mai Linh
Xem chi tiết
Lê Hải Ngọc
28 tháng 3 2015 lúc 20:05

Ta có:A=6n-1/3n+2= (6n+4)-5/3n+2=2+5/3n+2

=> Đẻ  Acó gtri nguyên thì 5 phải chia hết cho 3n+2
=> 3n+2 thuộc U(5)=(1,5,-5,-1)

ta có bảng sau:( bạn tự kẻ nhé : theo hàng ngang 1 cột là "3n+2" cột dưới là "n"

Vì n thuộc Z nên n= -1

 

Trần cẩm vân
19 tháng 3 2016 lúc 20:15

thật ra ko cần kẻ bảng cũng được. tự nhẩm thôi

Thần chết _diệt quỷ
21 tháng 3 2017 lúc 21:00

74222

Park Jiyeon
Xem chi tiết
ST
25 tháng 2 2017 lúc 17:27

a, A = \(\frac{3n-1}{n-2}=\frac{3n-6+5}{n-2}=\frac{3\left(n-2\right)+5}{n-2}=3+\frac{5}{n-2}\)

Để A thuộc Z <=> n - 2 thuộc Ư(5) = {1;-1;5;-5}

Ta có: n - 2 = 1 => n = 3

          n - 2 = -1 => n = 1

          n - 2 = 5 => n = 7

          n - 2 = -5 => n = -3

Vậy n = {3;1;7;-3}

b, A = \(\frac{3n-1}{n-2}=\frac{3n-6+5}{n-2}=\frac{3\left(n-2\right)+5}{n-2}=3+\frac{5}{n-2}\)

Để A đạt giá trị nhỏ nhất <=> \(\frac{5}{n-2}\) đạt giá trị nhỏ nhất

=> n - 2 đạt giá trị lớn nhất  (n - 2 \(\ne\)0 ; n - 2 < 0)

=> n - 2 = -1 => n = 1

Vậy để A có giá trị nhỏ nhất thì n = 1

c, \(\frac{3n-1}{n-2}=\frac{3n-6+5}{n-2}=\frac{3\left(n-2\right)+5}{n-2}=3+\frac{5}{n-2}\)

Để A đạt giá trị lớn nhất <=> \(\frac{5}{n-2}\)đạt giá trị lớn nhất

=> n - 2 đạt giá trị nhỏ nhất (n - 2 \(\ne\)0 ; n - 2 > 0)

=> n - 2 = 1 => n = 3

Vậy để A đạt giá trị lớn nhất thì n = 3

Ngô Phương Anh
Xem chi tiết