2015 nhân 2017 trừ 1/2014 công 2015 nhân 2016 nhan 2/3
Tính nhanh nếu có thể
a. 2017/2016 nhân 3/4 trừ 1/2016 nhân 0,75
b.1/2 nhân 2015/2016 cộng 1/3 nhân 2015/2016 trừ 2015/2016 nhân 5/6
a)\(=\frac{2017}{2016}.\frac{3}{4}-\frac{1}{2016}.\frac{3}{4}\)
\(=\frac{3}{4}\left(\frac{2017}{2016}-\frac{1}{2016}\right)\)
\(=\frac{3}{4}.1\)
\(=\frac{3}{4}\)
b)\(=\frac{2015}{2016}\left(\frac{1}{2}+\frac{1}{3}-\frac{5}{6}\right)\)
\(=\frac{2015}{2016}.0\)
\(=0\)
so sánh không tính kết quả
2015 nhân 2017 và 2016 nhân 2016
2014 nhân 2018 và 2016 nhân 2016
a ) 2015.2017 và 2016.2016
Ta thấy 5.7 < 6.6 , nên 2015 .2017 < 2016.2016
b ) 2014.2018 và 2016.2016
Ta thấy 4.8 < 6.6 nên 2014.2018 < 2016.2016
2015 x 2017 < 2016 x 2016 vì
2015 x 2017 = 4 064 255
2016 x 2016 = 4 064 256 nên
4 064 255 < 4 064 256
2014 x 2018 < 2016 x 2016 vì
2014 x 2018 = 4 064 252
2016 x 2016 = 4 064 256 nên
4 064 256 < 4 064 256
A=(1 trừ 1/2 ) nhân ( 1 trừ 1/3 ) nhân ( 1 trừ 1/4 ) nhân ( 1 trừ 1/5 ) nhân ....... nhân ( 1 trừ 1/2014 ) nhân ( 1 trừ 1/2015 )
A = (1 - \(\frac{1}{2}\)) x (1 - \(\frac{1}{3}\)) x (1 - \(\frac{1}{4}\)) x (1 - \(\frac{1}{5}\)) x ... x (1 - \(\frac{1}{2014}\)) x (1 - \(\frac{1}{2015}\))
A = \(\frac{1}{2}\)x \(\frac{2}{3}\) x \(\frac{3}{4}\) x \(\frac{4}{5}\) x ... x \(\frac{2013}{2014}\)x \(\frac{2014}{2015}\)
A = \(\frac{1x2x3x4x...x2013x2014}{2x3x4x5x...x2014x2015}\)
A = \(\frac{1}{2015}\)
Vậy A = \(\frac{1}{2015}\)
~~~
\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)\left(1-\frac{1}{5}\right)...\left(1-\frac{1}{2014}\right)\left(1-\frac{1}{2015}\right)\)
\(A=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot\frac{4}{5}\cdot...\cdot\frac{2013}{2014}\cdot\frac{2014}{2015}\)
\(A=\frac{1\cdot2\cdot3\cdot4\cdot...\cdot2013\cdot2014}{2\cdot3\cdot4\cdot5\cdot...\cdot2014\cdot2015}\)
\(A=\frac{1}{2015}\)
Tính nhanh
S=1*2016+2*2015+3*2014+...+2014*3+2015*2+2016*1
Chú thích:"*"là dấu nhân
Viết rõ lới giải nha
Cho A= 1/2015 +2/2016+3/2017+...+2014/4028 -2014
B = 1/2015+1/2016+1/2017+...+1/4028.
Tính : A/B =?
1) CMR : A=(n+2015)(n+2016) + n2 + n chia hết cho 2 với n ϵ N
2) So sánh :
P = \(\frac{2013}{2014^{2013}}+\frac{2014}{2015^{2014}}+\frac{2015}{2016^{2015}}+\frac{2016}{2017^{2016}}\) và
Q = \(\frac{2014}{2017^{2016}}+\frac{2013}{2016^{2015}}+\frac{2016}{2015^{2014}}+\frac{2015}{2014^{2013}}\)
A = (n + 2015)(n + 2016) + n2 + n
= (n + 2015)(n + 2015 + 1) + n(n + 1)
Tích 2 số tự nhiên liên tiếp luôn chia hết cho 2
=> (n + 2015)(n + 2015 + 1) chia hết cho 2
n(n + 1) chia hết cho 2
=> (n + 2015)(n + 2015 + 1) + n(n + 1) chia hết cho 2
=> A chia hết cho 2 với mọi n \(\in\) N (đpcm)
[ 1+2+3+4+5+...+2015+2016] nhân với [9 nhân 11 trừ 100+1]=...
a) (2 và 4/5= 3 và 2/5)+(1 và 1/5-2/5)+3
b) 107,35-( 16,85+284,745:12,3)
c) 2015 nhân 2015-2014 nhân 2016
Cho A = 1/2 + 1/3 + 1/4 + ... + 1/2017 B = 1/2016 + 2/2015 +3/2014+ ...+ 2015/2 + 2016/1 Tính B : A
Ta có: \(\dfrac{B}{A}=\dfrac{\dfrac{1}{2016}+\dfrac{2}{2015}+\dfrac{3}{2014}+...+\dfrac{2015}{2}+\dfrac{2016}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2017}}\)
\(=\dfrac{1+\left(1+\dfrac{2015}{2}\right)+\left(1+\dfrac{2014}{3}\right)+...+\left(1+\dfrac{2}{2015}\right)+\left(1+\dfrac{1}{2016}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2017}}\)
\(=\dfrac{\dfrac{2017}{2017}+\dfrac{2017}{2}+\dfrac{2017}{3}+...+\dfrac{2017}{2015}+\dfrac{2017}{2016}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2017}}\)
\(=\dfrac{2017\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}}\)
\(=2017\)