Chứng tỏ rằng : ƯCLN(n+2,2n+3)=1
Chứng minh rằng với mọi n thuộc N thì UCLN(3n + 2,2n + 1) = 1
Gọi UCLN(3n+2;2n+1) = d
Ta có : 3n+2 chia hết cho d suy ra 6 n+4 chia hết cho d
2n+1 chia hết cho d suy ra 6n+3 chia hết cho d
Do đó (6n+4)-(6n +3) chia hết cho d suy ra 6n+4-6n-3 chia hết cho d
Suy ra 1 chia hết cho d suy ra d=1 hay với mọi n thuộc N thì 3n+2 và 2n+1 là hai số nguyên tố cùng nhau (đpcm)
Gọi d \(\inƯC\left(3n+2,2n+1\right);d\in N\)*
\(\Rightarrow\hept{\begin{cases}3n+2⋮d\\2n+1⋮d\end{cases}}\)\(\Rightarrow\hept{\begin{cases}6n+4⋮d\\6n+3⋮d\end{cases}}\)
=> ( 6n + 4 ) - ( 6n + 3 ) \(⋮d\)
=> 1 \(⋮d\)
=> d = 1
Vậy UCLN(3n+2,2n+1) = 1 với mọi n\(\in N\)
Xin lỗi câu cuối phải là
Vậy với mọi n thuộc N thì ƯCLN(3n+2;2n+1) = 1 ( đpcm )
Chứng tỏ rằng: ƯCLN(2n+3,3n+4)=1 với n€N*
Vì n \(\in\)N* => 2n + 3 \(\in\)N*
3n + 4 \(\in\)N*
Gọi d = ƯCLN(2n+3,3n+4)
=> (2n+3) \(⋮\)d và (3n+4) \(⋮\)d
=> [3(2n+3)] \(⋮\)d và [2(3n+4)] \(⋮\)d
=> (6n+9) \(⋮\)d và (6n+8) \(⋮\)d
=> [(6n+9) - (6n+8)] \(⋮\)d
=> (6n+9-6n-8) \(⋮\)d
=> [(6n-6n)+(9-8)] \(⋮\)d
=> 1 \(⋮\)d
=> d \(\in\)Ư(1)
=> d = 1
Vậy ƯCLN(2n+3,3n+4) = 1 với n \(\in\)N*
Cho n thuộc N* chứng tỏ rằng: ƯCLN(n;n+1)=1
gọi d là ƯCLN(n;n+1)=d.theo bài ra ta có:
n;n+1 chia hết cho d
=>n+1-n chia hết cho d
=>1 chia hết cho d
=>d=1
=>ƯCLN(n;n+1)=1
=>đpcm
Công Thành ơi, (đpcm) là gì vậy bạn?
1) 1 số chia cho 21 dư 2 và chia cho 12 dư 5. Hỏi số đó chia 84 dư bao nhiêu
2) Tìm 1 số tự nhiên a thỏa mãn: a chia hết cho 7 và a chia cho 4 hoặc 6đều dư 3, biết rằng a<350
3) Cho ƯCLN (a,b)= 1, chứng tỏ rằng:
a) ƯCLN(a,a-b)= 1 ( với a>b)
b) ƯCLN(ab, a+b) = 1
4) Cho n thuộc N. Chứng tỏ rằng:
a) ƯCLN(3n+13,3n+14)=1
b) ƯCLN(3n+5, 6n +9)=1
với mọi n thuộc N, chứng tỏ rằng: ƯCLN(2n+5, 3n+7)=1
Gọi UCLN(2n+5,3n+7)là d(d\(\in N) \)
Ta có \(\begin{cases}2n+5 \vdots d \\3n+7 \vdots d \end{cases}\)<=>\(\begin{cases}6n+15 \vdots d \\6n+14 \vdots d \end{cases}\)
=> 6n+15-6n-14\(\vdots d\)
\(=> 1\vdots d \)
=> d \(\in Ư(1)=(1)\)
Vậy d=1
Gọi d = ƯCLN ( 2n + 5 , 3n + 7 ) . ⇒ 2n + 5 ⋮ d ; 3n + 7 ⋮ d . ⇒ 3 * ( 2n + 5 ) ⋮ d ; 2 * ( 3n + 7 ) ⋮ d . ⇒ 6n + 15 ⋮ d ; 6n + 15 ⋮ d . ⇒ ( 6n + 15 ) - ( 6n + 15 ) ⋮ d . ⇒ 1 ⋮ d . ⇒ d ∈ Ư ( 1 ) = { -1 ; 1 } . Vì d lớn nhất nên d = 1 . Vậy bài toán được chứng minh .
Tìm ƯCLN ( 3n+2,2n+1)
Gọi ƯCLN(3n+2,2n+1) là d
Ta có: 3n+2 chia hết cho d => 2(3n+2) chia hết cho d => 6n+4 chia hết cho d
2n+1 chia hết cho d => 3(2n+1) chia hết cho d => 6n+3 chia hết cho d
=> 6n+4 - (6n+3) chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> ƯCLN(3n+2,2n+1) = 1
Chứng tỏ rằng ƯCLN( n;n+1)=1
Ai trả lời nhanh nhất mình tick cho
Gọi d là ƯCLN(n;n+1)
Ta có :
n chia hết cho d
n+1 chia hết cho d
Suy ra : (n+1)-n Chia hết cho d
Hay 1 chia hết cho d
Suy ra : d thuộc Ư(1) = {1}
Vậy d= 1 hay ƯCLN(n;n+1)=1 (đpcm)
cái này là 2 số tự nhiên đôi 1 nên chuyện ucln của nó =1 là chuyện bình thường nhe bạn
cảm ơn nha Nguyễn Đức Minh minh k cho bạn một cái
Chứng tỏ rằng với a, b€N
ƯCLN(a, b) =ƯCLN(5a+2b,7a+3b)
Gọi d là uoc chung cua (5a + 2b ; 7a +3b)
\(\begin{cases}5a+2b⋮d\\7a+3b⋮d\end{cases}\)
=>5 . (7a + 3b) - 7 (5a + 2b)\(⋮\)d
=>35a + 15b - 35a -14b \(⋮\)d
=> 15b - 14b \(⋮d\)
=> b (1b) \(⋮d\)
\(\begin{cases}5a+2b⋮d\\7a+3b⋮d\end{cases}\)
=>3(5a + 2b) - 2(7a + 3b)\(⋮d\)
=>15a +6b - 14a - 6b \(⋮d\)
=> a (1a) \(⋮d\)
mà ( a , b) =1
=> d=1
vậy 5a + 2b và 7a +3b nguyên tố cùng nhau
tìm ƯCLN(2n+2,2n)