tính tổng
A=1+2+3+4+5+...+50
B=1+3+5+7+...+49
tính các tổng sau
A=1*2+2*3+3*4+4*5+5*6+6*7...+49*50
B=1*50+2*49+3*48+...+49*2+50*1
Tính tổng sau:
a) A = 1 + (- 2) + 3 + (- 4) + ... + 49 + (- 50)
b) B = 1 + (- 2) + (- 3) + 4 + 5 + (- 6) + (- 7) +8 + ... + 1997 + (- 1998) + (- 1999) + 2000
Tính tổng: a) A= 1 - 2 + 3 - 4 +5 - 6...+ 49 - 50; b) B = 1 + (-5) + 2 + (-6) +...+16 + (-20).
1, tính tổng
a, 1+(-2)+3+(-4)+19+(-20)
b,23+25+...+49
c,2-4+6-8+...48-50
d,-1+3-5+7-...-97+99
satoshi
Có phải dòng đầu tiên bạn thiếu dấu "..." đúng không nhỉ???
a, 1+ \((\)- 2 \()\)+ 3 + \((\)- 4\()\)+ 19 + \((\)- 20 \()\)
= 1 - 2 + 3 - 4 + 19 - 20
= 20 - 19 + 4 - 3 + 2 - 1
= 1 + 4 - 3 + 2 - 1
= 1 + 1 + 2 - 1
= 1 + 1 + 1
= 3
c, 2 - 4 + 6 - 8 +....+ 48 -50
đặt A = 2 - 4 + 6 - 8 +....+ 48 -50
= -2 + -2 + -2 +.....+ -2 \((\) lưu ý : mỗi số -2 có đóng mở ngoặc và có 50 : 2 = 25 chữ số -2 \()\)
= 25 \(_{\times}\) -2
= - 50
Tính tổng: a) A= 1 - 2 + 3 - 4 +5 - 6...+ 49 - 50; b) B = 1 + (-5) + 2 + (-6) +...+16 + (-20)
Làm chi tiết . Giúp với ạ
a, [1 - 2 ]+[ 3 - 4] +[5 - 6.]..+ [49 - 50] có 25 số hạng
=-1+[-1]+[-1]+...+[-1]
=-1.25
=-25
vậy b=-25
a. S=1-2+3-4+5-6...+49-50
b. S=1-3+5-7+...+49-50
a) Số số của S là:
(50 - 1) : 1 + 1 = 49 : 1 + 1 = 49 + 1 = 50 (số).
Ta thấy cứ 2 số liên tiếp thì sẽ tạo thành 1 cặp số, mỗi cặp số là một số hạng:
S = (1-2)+(3-4)+(5-6)+...+(49-50).
Tổng trên có số số hạng là:
50 : 2 = 25 (số hạng).
Tất cả các cặp số đều có giá trị bằng -1.
VD: 1-2=-1.
2-3=-1.
...
Nên giá trị của S là:
25 . (-1) = -25.
b) Số số của S là:
(47 - 1) : 2 + 1 + 2 = 26 (số).
(Cộng thêm 2 là vì 2 số cuối là 49 và 50 không có khoảng cách là 2).
Ta thấy 2 số liên tiếp thì sẽ tạo thành 1 cặp số:
S = (1-3)+(5-7)+...+(49-50).
Mỗi cặp số là một số hạng.
Tổng trên có số số hạng là:
26 : 2 = 13 (số số hạng).
Trừ cặp số cuối là 49-50 có giá trị bằng -1 thì tất cả các cặp số đều có giá trị bằng -2.
VD: 1-3=-2.
5-7=-2.
...
Nên giá trị của S là:
12. (-2) + -1 = (-24) + (-1) = -25.
A) Tính M: 3/4.8/9.15/16.9999/10000 B) Chứng tỏ rằng: 1/26+1/27+...+1/50=99/50-97/49+...+7/4-5/3+3/2-1
\(M=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}\cdot\cdot\cdot\cdot\frac{9999}{10000}\)
\(=\frac{1.3}{2.2}\cdot\frac{2.4}{3.3}\cdot\frac{3.5}{4.4}\cdot\cdot\cdot\cdot\frac{99.101}{100.100}\)
\(=\frac{1}{2}\cdot\frac{101}{100}=\frac{101}{200}\)
Xét vế phải :
\(VP=\frac{99}{50}-\frac{97}{49}+...+\frac{7}{4}-\frac{5}{3}+\frac{3}{2}-1\)
\(=2.\left(\frac{99}{100}-\frac{97}{98}+...+\frac{7}{8}-\frac{5}{6}+\frac{3}{4}-\frac{1}{2}\right)\)
\(=2\left[\left(1-\frac{1}{100}\right)-\left(1-\frac{1}{98}\right)+...+\left(1-\frac{1}{4}\right)-\left(1-\frac{1}{2}\right)\right]\)
\(=2\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{100}\right)\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{25}+\frac{1}{26}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+...+\frac{1}{25}\right)\)
\(=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{49}+\frac{1}{50}=VT\Rightarrow\left(đpcm\right)\)
áp dụng công thức tính tổng các dãy số:
a,1+2+3+4+5+6+7+8+9
b,1+2+.......+49+50
c,1+3........+97+99
d,2=4+.......+98+100
a, Số số hạng của dãy số là 9(số);
=> Tổng của dãy số là (9+1)*9/2=45
b,Số số hạng của dãy số là 50 số
=> Tổng của dãy số là (50+1)*50/2=1275
c, Số số hạng của dãy số là (99-1)/2+1=50 số
=> Tổng của dãy số là (99+1)*50/2= 2500
a) S=(9-1+1)(9+1):2=45
b) S=(50-1+1)(50+1):2=1275
c) S=[(99-1):2+1](99+1):2=2500
d) S=[(100-2):2+1](100+2):2=2550
Tính tổng
A = ( -1 ) + ( -3) + ( -5 ) + .... +( - 49 )
B = ( -2 ) + ( -4 ) + ( -6 ) + ... + ( -50 )
Tổng A bằng
-(1+3+5+....+49)
-(625)
nha bn đúng đó tk mình nha
A = ( -1 ) + ( -3) + ( -5 ) + .... +( - 49 )
Ta tính tổng bằng cách tính như số nguyên dương
Số số hạng ra 25 số .
Tổng trên áp dụng công thức ra -625
B = ( -2 ) + ( -4 ) + ( -6 ) + ... + ( -50 )
Ta tính tổng bằng cách tính như số nguyên dương
Số số hạng ra 25 số .
Tổng trên áp dụng công thức ra -650