Rút gọn C= [ (x^2-y^2)^3+(y^2-z^2)^3+(z^2-x^2)^3] / [ (x-y)^3 + (y-z)^3 + (z-x)^3 ]
Rút gọn các phân thức sau: a) x^3+y^3+z^3-3xyz/(x-y)^2+(x-z)^2+(y-z)^2 b) (x^2-y^2)^3+(y^2-z^2)^3+(z^2-x^2)^3/(x-y)^3+(y-z)^3+(z-x)3
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.
Rút gọn : (x-y)^3+(y-z)^3+(z-x)^3/(x^2-y^2)^3+(y^2-z^2)^3+(z^2-x^2)^3
Bài 1 rút gọn các phân thức:
a)(3x^2-11x+8)/(2x^2-9x+7)
b)(x^2+y^2+z^2-3xyz)/[(x-y)^2+(x-z)^2+(y-z)^2]
c)[(x^2-y^2)^3+(y^2-z^2)^3+(z^2-x^2)^3]/ (x-y)^3+(y-z)^3+(z-x)^3
a/ \(\frac{3x^2-11x+8}{2x^2-9x+7}=\frac{\left(x-1\right)\left(3x-8\right)}{\left(x-1\right)\left(2x-7\right)}=\frac{3x-8}{2x-7}\)
câu b,c tương tự nha ^^
Rút gọn: x^3 + y^3 - z^3 - 3xyz / (x - y)^2 + (y - z)^2 + (z - x)^2
1. Cho các số x, y, z thỏa mãn : (x + y)(y + z)(z + x) = 4. CMR: \(\left(x^2-y^2\right)^3\)+ \(\left(y^2-z^2\right)^3\)+ \(\left(z^2-x^2\right)^3\)= 12 (x - y)(y - z)(z - x)
2. Rút gọn: \(\dfrac{\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3}{\left(x^2-y^2\right)^3+\left(y^2-z^2\right)^3+\left(z^2-x^2\right)^3}\) biết (x + y)(y + z)(z + x) = 1
3. Cho a, b, c ≠ 0 thỏa mãn: a + b + c = \(a^2+b^2+c^2\) = 2. CMR: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{abc}\)
MONG MN GIẢI GIÚP EM Ạ!!! EM ĐANG CẦN GẤP ! CẢM ƠN MN NHIỀU
Hầy mình không nghĩ lớp 7 đã phải làm những bài biến đổi như thế này. Cái này phù hợp với lớp 8-9 hơn.
1.
Đặt $x^2-y^2=a; y^2-z^2=b; z^2-x^2=c$.
Khi đó: $a+b+c=0\Rightarrow a+b=-c$
$\text{VT}=a^3+b^3+c^3=(a+b)^3-3ab(a+b)+c^3$
$=(-c)^3-3ab(-c)+c^3=3abc$
$=3(x^2-y^2)(y^2-z^2)(z^2-x^2)$
$=3(x-y)(x+y)(y-z)(y+z)(z-x)(z+x)$
$=3(x-y)(y-z)(z-x)(x+y)(y+z)(x+z)$
$=3.4(x-y)(y-z)(z-x)=12(x-y)(y-z)(z-x)$
Ta có đpcm.
Bài 2:
Áp dụng kết quả của bài 1:
Mẫu:
$(x^2-y^2)^3+(y^2-z^2)^3+(z^2-x^2)^3=3(x-y)(y-z)(z-x)(x+y)(y+z)(z+x)=3(x-y)(y-z)(z-x)(1)$
Tử:
Đặt $x-y=a; y-z=b; z-x=c$ thì $a+b+c=0$
$(x-y)^3+(y-z)^3+(z-x)^3=a^3+b^3+c^3$
$=(a+b)^3-3ab(a+b)+c^3=(-c)^3-3ab(-c)+c^3=3abc$
$=3(x-y)(y-z)(z-x)(2)$
Từ $(1);(2)$ suy ra \(\frac{(x-y)^3+(y-z)^3+(z-x)^3}{(x^2-y^2)^3+(y^2-z^2)^3+(z^2-x^2)^3}=1\)
Bài 3:
\(ab+bc+ac=\frac{(a+b+c)^2-(a^2+b^2+c^2)}{2}=\frac{2^2-2}{2}=1\)
Do đó:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ab+bc+ac}{abc}=\frac{1}{abc}\)
Ta có đpcm.
Rút gọn phân thức: (x^3 + y^3 + z^3 - 3xyz) / (x - y)^2 + (y - z)^2 + (z - x)^2
\(\frac{x^3+y^3+z^3-3xyz}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)
\(=\frac{x^3+y^3+z^3-3xyz}{x^2-2xy+y^2+y^2-2yz+z^2+z^2-2xz+x^2}=\frac{\left(x+y+z\right).\left(x^2+y^2+z^2-xy-yz-zx\right)}{2.\left(x^2+y^2+z^2-xy-yz-zx\right)}=\frac{x+y+z}{2}\)
p/s: áp dụng 7 hàng đẳng thức là làm đc =)
Rút gọn:
A=(b-c)^3+(c-a)^3+(a-b)^3/a^2(b-c) + b^2(c-a) + c^2(a-b)
B= x^3 -y^3+z^3+3xy^2/(x+y)^2 +(y+z)^2+(z-x)^2
C=x^3 + y^3 +z^3 -3xyz /(x-y)^2+(y-z)^2+(z-x)^2
Các bạn cố gắng làm cả 3 phần đầy đủ nhé, cảm ơn các bạn nhiều!
\(A=\frac{b^3-3b^2c+3bc^2-c^3+c^3-3c^2a+3ca^2-a^3+a^3-3a^2b+3ab^2-b^3}{a^2b-a^2c+b^2c-ab^2+c^2a-bc^2}\)
\(=\frac{-3b^2c+3bc^2-3c^2a+3ca^2-3a^2b+3ab^2}{b^2c-bc^2+c^2a-ac^2+a^2b-ab^2}\)
\(=\frac{-3\left(b^2c-bc^2+c^2a-ca^2+a^2b-ab^2\right)}{b^2c-bc^2+c^2a-ca^2+a^2b-ab^2}=-3\)
\(C=\frac{\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)}{x^2-2xy+y^2+y^2-2yz+z^2+z^2-2zx+x^2}\)
\(=\frac{\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)}{2\left(x^2+y^2+z^2-xy-yz-zx\right)}=\frac{x+y+z}{2}\)
P/s: bài b sai đề thì pải
1) Rút gọn bt:
(x+y+z)3+(x-y-z)3+(y-x-z)3+(z-y-x)3
2)Tìm x,y,z t/m: 9x2+y2+2z2-18x+4z-6y+20=0
3)Cho \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}\)=1 và \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}\)=0 . CMR:
\(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}\)=1
Cho x/a= y/b= z/c với a, b, c, x, y, z không bằng 0
Rút gọn biểu thức B = ( a^2.x + b62.y + c^2.z ) ^3 / x^3 + y^ 3 + z^3