Tìm x để (x + 22) chia het (x + 1) ?
x+22 chia het cho x+1
x + 22 chia hết cho x + 1
=> (x + 1) + 21 chia hết cho x + 1
=> 21 chia hết cho x + 1
=> x + 1 thuộc {1 ; 3 ; 7 ; 21} (các nghiệm âm nếu như bạn cần)
=> x thuộc {0 ; 2 ; 6 ; 20}
x + 22 = x + 1 + 21
\(\left(x+1\right)+21⋮x+1\)khi và chỉ khi x + 1 là ước của 21
=> \(x+1\in\left\{1;3;7;21;-1;-3;-7;-21\right\}\)
Chúc bạn làm bài tốt
\(\frac{x+22}{x+1}=\frac{x+1+21}{x+1}=\frac{x+1}{x+1}+\frac{21}{x+1}\)
\(\Rightarrow x\inƯ\left(21\right)\)
\(\Rightarrow x=\left\{\pm1;\pm3;\pm7;\pm21\right\}\)
tim x,y thuoc n de:
(x+22) chia het cho (x+1)
(2x+23) thuoc B *(x-1)
(3x+1) chia het cho (2x-1)
(x-2)*(2y+1)=17
xy+x+2y=5
( x + 22 ) \(⋮\)( x + 1 )
x + 1 + 21 \(⋮\)( x + 1 )
Mà x + 1 \(⋮\)x + 1 → 21 \(⋮\)x + 1 \(\in\)Ư ( 21 )
( x - 2 ) . ( 2y + 1 ) = 17
Mà 17 là số nguyên tố và bằng 1 . 17
→ Nếu ( x - 2 ) = 1 thì ( 2y + 1 ) = 17
→ Nếu ( 2y + 1 ) = 1 thì ( x - 2 ) = 17
a, x+22 chia hết cho x+1
suy ra : x+1+21 chia hêt cho x+1
mà x+1 chia hết cho x+1
suy ra 21 chia hết cho x+1
suy ra x+1 thuộc -1, 1 , 3, -3, 7, -7, 21, -21
suy ra x thuộc -2, 0, 2, -4, 6, -8, 20, -22
b, 2x+23 thuộc x-1
suy ra 2x+23 = x-1
2x-x= -23-1
x= -24
c, 3x+1 chia hết cho 2x-1
suy ra 2(3x+1) chia hết cho 2x-1
6x+2 chia hết cho 2x-1 (1)
lai có 2x-1 chia hết cho 2x-1
suy ra 3(2x-1) chia hết cho 2x-1
6x-3 chia hết cho 2x -1 (2)
từ 1 và 2
suy ra (6x+2)-(6x-3) chia hết cho 2x-1
5 chia hết cho 2x-1
suy ra 2x-1 thuộc -1,1,5,-5
x thuộc 0 , 1, 3, -2
c va d thì x thuộc z mới tìm được
K CHO MÌNH NHÉ
Tìm các giá trị nguyên của của x để:(x2-x-1) chia het cho (x-1)
cho x=y:7
CMR các biểu thức trên chia het cho 7
22.x-y chia het cho7
8.x+20.y chia het cho 7
11.x+10.y chia het cho 7
17 chia het(x-1)và(x-1)chia het 17. tìm x
14 + x3 = 22 . 1000
125 - 5 ( x - 3 ) = 102
x chia het cho 12 va x nho nhat khac 0
48 chia het cho x; 36 chia het cho x; va 3 < x < 14
14 + x3 = 22 . 1000
14 + x3 = 22
x3 = 22 - 14 = 8
=> x = 2
125 - 5.(x - 3) = 102
5.(x - 3) = 25
x - 3 = 5
x = 8
tìm x thuộc Zbiet ;
(x+7+1) chia het cho (x+7)
(x+8)chia het cho (x+7)
(x^2-3x-5)chia hết cho x-3
2x^2+3x+2 chia hết cho x+1
x^2-x-1 chia het cho x-1
x + 7 + 1 ⋮ x + 7
x + 7 ⋮ x + 7
=> 1 ⋮ x + 7
=> x + 7 thuộc Ư(1) = {-1; 1; -7; 7}
=> x thuộc {-8; -6; -14; 0}
vậy_
x + 8 ⋮ x + 7
=> x + 7 + 1 ⋮ x + 7
làm tiếp như câu a
Ta có:
x+7+1 chia hết cho x+7
suy ra x+7+1-(x+7) chi hết cho x+7
suy ra 1 chia hết cho x+7
x+7 thuộc 1;-1
suy ra x=-6;-8
Ta có:
x2-3x-5 =x.x-3.x-5 chia hết cho x-3
=x.(x-3) chia hết cho x-3 suy ra 5 chia hết cho x-3
suy ra x-3 thuộc 5;-5;1;-1
suy ra x=8;-2;4;2
x2-x-1
x.x-x-1
x.(x-1)-1
suy ra x-1 thuộc 1;-1
suy x=2;0
Tìm x biet rang 17 chia het cho [x-1] va [x-1] chia het cho 17
Tìm xeZ
a) (2x + 5) chia hết (x+2)
b) (3x+5) chia het (x-2)
c) (2-4x) chia het ( x-1)
d) ( x^2 - x+2) chia het (x-1)
MK lm mẫu cho câu a) nhé, các câu còn lại bn làm tương tự
a) \(2x+5\)\(⋮\)\(x+2\)
\(\Rightarrow\)\(2\left(x+2\right)+1\)\(⋮\)\(x+2\)
Ta thấy \(2\left(x+2\right)\)\(⋮\)\(x+2\)
nên \(1\)\(⋮\)\(x+2\)
\(\Rightarrow\)\(x+2\)\(\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\Rightarrow\)\(x=\left\{-3;-1\right\}\)
Vậy...
a) \(2x+5\)\(⋮\)\(x+2\)
\(\Rightarrow\)\(2\left(x+2\right)+1\)\(⋮\)\(x+2\)
Ta thấy \(2\left(x+2\right)\)\(⋮\)\(x+2\)
nên \(1\)\(⋮\)\(x+2\)
\(\Rightarrow\)\(x+2\)\(\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\Rightarrow\)\(x=\left\{-3;-1\right\}\)