2^2+2^4+2^6+2^8+...+2^210
chứng minh A chia hết cho 21
Chứng minh rằng : a, M = 21^9+21^8+21^7 +....+ 21+1 chia hết cho 2 và 5 b, N = 6+6^2+6^3 +....+ 6^2020 chia hết cho 7 nhưng không chia hết cho 9 c, P = 4+4^2+4^3 +....+ 4^23+4^24 chia hết cho 20 và 21 d, Q = 6+6^2+6^3 +....+ 6^99 chia hết cho 43
Hộ mình làm bài này nhá :))))))))
Giải:
a) \(M=21^9+21^8+21^7+...+21+1\)
Do \(21^n\) luôn có tận cùng là 1
\(\Rightarrow M=21^9+21^8+21^7+...+21+1\)
Tân cùng của M là:
\(1+1+1+1+1+1+1+1+1+1=10\) tận cùng là 0
\(\Rightarrow M⋮10\)
\(\Leftrightarrow M⋮2;5\)
b) \(N=6+6^2+6^3+...+6^{2020}\)
\(N=6.\left(1+6\right)+6^3.\left(1+6\right)+...+6^{2019}.\left(1+6\right)\)
\(N=6.7+6^3.7+...+6^{2019}.7\)
\(N=7.\left(6+6^3+...+6^{2019}\right)⋮7\)
\(\Rightarrow N⋮7\)
Ta thấy: \(N=6+6^2+6^3+...+6^{2020}⋮6\)
Mà \(6⋮̸9\)
\(\Rightarrow N⋮̸9\)
c) \(P=4+4^2+4^3+...+4^{23}+4^{24}\)
\(P=1.\left(4+4^2\right)+4^2.\left(4+4^2\right)+...+4^{20}.\left(4+4^2\right)+4^{22}.\left(4+4^2\right)\)
\(P=1.20+4^2.20+...+4^{20}.20+4^{22}.20\)
\(P=20.\left(1+4^2+...+4^{20}+4^{22}\right)⋮20\)
\(\Rightarrow P⋮20\)
\(P=4+4^2+4^3+...+4^{23}+4^{24}\)
\(P=4.\left(1+4+4^2\right)+...+4^{22}.\left(1+4+4^2\right)\)
\(P=4.21+...+4^{22}.21\)
\(P=21.\left(4+...+4^{22}\right)⋮21\)
\(\Rightarrow P⋮21\)
d) \(Q=6+6^2+6^3+...+6^{99}\)
\(Q=6.\left(1+6+6^2\right)+...+6^{97}.\left(1+6+6^2\right)\)
\(Q=6.43+...+6^{97}.43\)
\(Q=43.\left(6+...+6^{97}\right)⋮43\)
\(\Rightarrow Q⋮43\)
Chúc bạn học tốt!
Chứng minh rằng : a, M = 21^9+21^8+21^7 +....+ 21+1 chia hết cho 2 và 5 b, N = 6+6^2+6^3 +....+ 6^2020 chia hết cho 7 nhưng không chia hết cho 9 c, P = 4+4^2+4^3 +....+ 4^23+4^24 chia hết cho 20 và 21 d, Q = 6+6^2+6^3 +....+ 6^99 chia hết cho 43
Hộ mình làm bài này nhá :))))))))
Bài 1: cm rằng:
1) M= 219+218+217+...+21+1chia hết cho 2 và 5
2) N=6+62+62+..62020 chia hết cho 7, không chia hết cho 9
3) P=4+42+43+...423+424 chia hết cho 20 và 21
4) Q=6+62+63+...+699 chia hết cho 43
a) chứng minh rằng A = 1+4+4^2+4^3+......4^2012 chia hết cho 21
b)chứng minh rằng A=1+7+7^2+7^3+............+7^101 chia hết cho 8
a)
A=1+4+42+...+459A=1+4+42+...+459
A=(1+4+42)+(43+44+45)+...+(457+458+459)A=(1+4+42)+(43+44+45)+...+(457+458+459)
A=(1+4+42)+43(1+4+42)+...+447(1+4+42)A=(1+4+42)+43(1+4+42)+...+447(1+4+42)
A=21+43.21+...+447.21A=21+43.21+...+447.21
A=21(1+43+...+447)A=21(1+43+...+447)
⇒A⋮21
các số như 43,447,459,458........ là 4 mũ và các số đằng sau là số mũ
câu b cũng làm như vậy nhưng dổi các số và kết quả
1) Tìm x thuộc N để A, B chia hết cho 2 :
A = 18 + 8 + 12 + x
B = 76 + 9 + x
2) Cho a thuộc N biết a Chia hết cho 12 dư 8. Hỏi a có chia hết cho 4 và 6 không ?
3) Chứng minh rằng :
a, 10^28 + 8 chia hết cho 72
b, 8^8 + 2^20 chia hết cho 1
6) Cho A= 2 + 2^2 + 2^3 + ........ + 2^60
Chứng minh A chia hết cho 3, 7, 15
cho a= 2+2^2+2^3+2^4+2^5+2^6+2^7+2^7+2^8+2^9 chia hết cho 7
cho b= 4+4^2+....+ 4^10 chia hết cho 6
cho b= 4+4^2+..+ 4^10 chia hết cho 17
chứng minh
Chứng minh:
27^8 - 3^21 chia hết cho 26
8^12-2^33-2^30 chia hết cho 55
3^n+3 + 3^n+1+2^n+3+2^n+1 chia hết cho 6
3^n+2-2^n-2+3^n- 2^n chia hết cho 10
chứng minh rằng:
a, 4+4^2+4^3+4^4+..+4^60 chia hết 5, chia hết cho 21.
b, 5+5^2+5^3+5^4+...+ 5^10 chia hết cho 6
a) 4.(1+4)+43.(1+4)+................+459(1+4)
=5.4+5.43+...+5.459
=5.(4+43+.+459) chia hết cho 5
4.(1+4+42)+44.(1+4+42)+...............+458(1+4+42)
=21.4+44.21+..+21.458
=21.(4+44+.+458) chia hết cho 21
b) 5.(1+5)+53(1+5)+.+59(1+5)
=6.(5+53+.............+59) chia hết cho 6
a) Đặt biểu thức trên là A, ta có:
A = 4 + 42 + 43 + 44 + ... + 460
=> A = (4 + 42) + (43 + 44) + ... + (459 + 460)
=> A = 4(1 + 4) + 43(1 + 4) + ... + 459(1 + 4)
=> A = 4 . 5 + 43 . 5 + ... + 459 . 5
=> A = 5(4 + 43 + ... + 459)
=> A ⋮ 5
A = 4 + 42 + 43 + 44 + ... + 460
=> A = (4 + 42 + 43) + (44 + 45 + 46) + ... + (458 + 459 + 460)
=> A = 4(1 + 4 + 42) + 44(1 + 4 + 42) + ... + 458(1 + 4 + 42)
=> A = 4 . 21 + 44 . 21 + ... + 458 . 21
=> A = 21(4 + 44 + ... + 458)
=> A ⋮ 21
b) Đặt biểu thức trên là B, ta có:
B = 5 + 52 + 53 + 54 + ... + 510
=> B = (5 + 52) + (53 + 54) + ... + (59 + 510)
=> B = 5(1 + 5) + 53(1 + 5) + ... + 59(1 + 5)
=> B = 5 . 6 + 53 . 6 + ... + 59 . 6
=> B = 6(5 + 53 + ... + 59)
=> B ⋮ 6
Bài 1 Chứng minh A= 2^1+2^2+2^3+2^4+...2^2010 chia hết cho 3 và 7
b) Chứng minh B= 3^1+3^2+3^3+3^4+...+2^2010 chia hết cho 4 và 13
c) chứng minh C=5^1+5^2+5^3+5^4+...+5^2010 chia hết cho 6 và 31
d) chứng minh D= 7^1+7^2+7^3+7^4+...+7^2010 chia hết cho 8 và 57
Bài 2
a) A= 2^0+2^1+2^2+2^3+...+2^2010 và B=2^2011-1
b) A=2009*2011 và B=2010^2
c) A= 10^30 và B=2^100
d) A= 333^444 và B= 444^333
e) A=3^450 và B= 5^300
f) 5^36 và 11^24 ; 625^5 và 125^7 ; 3^2n và 2^3n (n thuộc N*) ; 5623 và 6*5^22
g) 7*2^13 và 2^16 ; 21^15 và 27^5*49^8 ; 199^20 và 2003^15 ; 3^39 và 11^21
câu 2 là so sánh nhé các bn các bn giúp mk nhé