Chứng minh 2^1+2^2+2^3+2^4+...+2^2019 chia hết cho 3
Chứng minh A=2019+2019^2+2019^3+2019^4+2019^5+2019^6 chia hết cho 2.
+)Ta có:\(A=2019+2019^2+2019^3+2019^4+2019^5+2019^6\)
\(\Rightarrow A=\left(2019+2019^2\right)+\left(2019^3+2019^4\right)+\left(2019^5+2019^6\right)\)
\(\Rightarrow A=\left(2019+2019^2\right)+2019^2.\left(2019+2019^2\right)+2019^4.\left(2019+2019^2\right)\)
+)Ta lại có:20192 tận cùng là 1
=>2019+20192 tân cùng là 9+1=10
=>2019+20192\(⋮2\)
\(\Rightarrow\left(2019+2019^2\right)⋮2;2019^2.\left(2019+2019^2\right)⋮2;2019^4.\left(2019+2019^2\right)⋮2\)
\(\Rightarrow A⋮2\)
Vậy \(A⋮2\left(ĐPCM\right)\)
Chúc bn học tốt
A = 2019 + 20192 + 20193 + 20194 + 20195 + 20196
A = ( 2019 + 20192 ) + ( 20193 + 20194) + ( 20195 + 20196)
A = 1 . ( 2019 + 20192 ) + 20193 . (2019 + 20192 ) + 20195 . ( 2019 + 20192 )
A = 1 . 4 078 380 + 20193 . 4 078 380 + 20195 . 4 078 380
A = 4 078 380 . ( 1 + 20193 + 20195) \(⋮2\rightarrowĐPCM\)
# HOK TỐT #
\(A=2019+2019^2+2019^3+2019^4+2019^5+2019^6\)
<=> \(A=\left(2019+2019^2\right)+\left(2019^3+2019^4\right)+\left(2019^5+2019^6\right)\)
<=>\(A=2019.\left(1+2019\right)+2019^3.\left(1+2019\right)+2019^5\left(1+2019\right)\)
<=>\(A=2019.2020+2019^3.2020+2019^5.2020\)
<=>\(A=2020.\left(2019+2019^3+2019^5\right)\)
<=>\(A=2.1010\left(2019+2019^3+2019^5\right)⋮2\)=> \(A⋮2\)
Vậy .....
Chứng minh: ababab chia hết cho 13
abcabc chia hết cho 11; Cho A =2 mủ 0 + 2 mủ 1 + 2 mủ 2 + 2 mủ 3 + 2 mủ 4 +......+2 mủ 2019
cho A=1+2+2^2+2^3+...+2^2019 chứng minh rằng A chia hết cho 2,3,7,30
Giải thích các bước giải:
Ta có:A=1+2+22+23+...+22019A=1+2+22+23+...+22019
→2A=2+22+23+24+...+22020→2A=2+22+23+24+...+22020
→2A−A=22020−1→2A−A=22020−1
→A=22020−1→A=22020−1
Vì 2⋮2→22020⋮22⋮2→22020⋮2
→22020−1⋮̸2→22020−1⋮̸2
→A⋮̸2→A⋮̸2
Ta có:
22020−1=(22)1010−1=41010−1⋮4−1=322020−1=(22)1010−1=41010−1⋮4−1=3
→22020−1⋮3→22020−1⋮3
→A⋮3→A⋮3
Lại có:
22020=2⋅22019=2⋅23⋅673=2⋅(23)673=2⋅867322020=2⋅22019=2⋅23⋅673=2⋅(23)673=2⋅8673
Vì 88 chia 77 dư 11
→8673→8673 chia 77 dư 11
→2⋅8673→2⋅8673 chia 77 dư 22
→2⋅8673−1→2⋅8673−1 chia 77 dư 11
→22020−1→22020−1 chia 77 dư 11
→A→A chia 77 dư 11
→A⋮̸7→A⋮̸7
→A⋮̸70→A⋮̸70 vì 70=7⋅1070=7⋅10
Ta có:
A=22020−1A=22020−1
→A+1=22020→A+1=22020
→A+1=(21010)2→A+1=(21010)2 là số chính phương
chứng minh rằng nếu n là số nguyên dương thì:
2(1^2019+2^2019+3^2019+...+n^2019) chia hết cho n(n+1)
Xin chào bạn ! Mình là youtuber PUBG Takaz đây !
H=1/2019+2/2018+3/2017+...+2018/2+2019/1 chứng minh H+2019 chia hết 2020. Giups mik nha đúng mik tick cho :))))
chứng minh 4+4^2+4^3+...+4^2017+4^2018+4^2019 chia hết cho 21
4 + 42 + 43 + 44 + ... + 423 + 424
= (4 + 42 + 43) + ... + (422 + 423 + 424)
= 4x(1+4+42) + ... + 422x(1+4+42)
= 4x21 + ... + 422x21
= (4+...+422)x21
Đúng thì nhớ tick cho mình nha,mình cảm ơn
chứng minh tổng S = 1 + 4 + 4^2 + 4^3 + 4^4 + 4^5 + ...... + 4^2019 chia hết cho 5 giúp mik với
S = 1 + 4 + 42 + 43 + 44 + ... + 42019
S = (1 + 4) + ( 42 + 43) + (44 + 45) +... + (42018 + 42019)
S = (1 + 4) + 42(1 + 4) + 44(1 + 4) + ... + 42018(1 + 4)
S = 5 + 42.5 + 44.5 + ... + 42018.5
S = 5(1 + 42+ 44 +... + 42018) \(⋮\) 5 (ĐPCM)
1)Cho số thực x khác o thỏa mãn x^2 - x - 1=0 . Tính (x^4 - x^8 + 1/x^4 - 1/x^8 - 1)^2019
2) Cho P là số nguyên tố >3. Chứng minh P^2 - 1 chia hết cho 24.
3) Cho a^2 + b^2 + c^2= ab + bc + ca. Chứng minh a=b=c.
Cho \(M = (1+\frac{1}{2}+\frac{1}{3}+...++\frac{1}{2018}).2 .3 .4. ... .2018\)
Chứng minh : M chia hết cho 2019
M=[ 1+1/2018 +1/2 +1/2017 +1/3 +1/2016 +........+1/1009 +1/1010] .2.3.4...2018
M=[2019/2018 =2019/2.2017 +2019/3.2016 +....+2019/1009.1010].2.3.....2018
M.=2019.[1/2018 +1/2.2017 +.....+1/1009.1010] .2.3....2018 chia het cho 2019
suy ra M chia het cho2019
vay M chia het cho2019