Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Trọng Đức
Xem chi tiết
Trần Thanh Phương
Xem chi tiết
Miku
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 2 2022 lúc 23:27

b: Gọi d=UCLN(2n+1;3n+1)

\(\Leftrightarrow3\left(2n+1\right)-2\left(3n+1\right)⋮d\)

\(\Leftrightarrow1⋮d\)

=>d=1

=>UC(2n+1;3n+1)={1;-1}

c: Gọi d=UCLN(75n+6;8n+7)

\(\Leftrightarrow8\left(5n+6\right)-5\left(8n+7\right)⋮d\)

\(\Leftrightarrow d=13\)

=>UC(5n+6;8n+7)={1;-1;13;-13}

Lê Tài Bảo Châu
Xem chi tiết
shitbo
25 tháng 10 2020 lúc 14:35

thấy ngay \(p_6>2\text{ do đó: }VP\equiv1\left(\text{mod 8}\right)\text{ từ đó suy VP cũng đồng dư với 1 mod 8}\)

có bổ đề SCP LẺ chia 8 dư 1 do đó:

trong 5 số: \(p_1;p_2;...;p_5\text{ có 4 số chẵn; 1 số lẻ không mất tính tổng quát giả sử: }p_5\text{ lẻ}\Rightarrow16+p_5^2=p_6^2\text{(đơn giản)}\)

Khách vãng lai đã xóa
shitbo
25 tháng 10 2020 lúc 14:45

\(p+1=2a^2;p^2+1=2b^2\Rightarrow p\left(p-1\right)=2\left(b-a\right)\left(b+a\right)\)

\(\text{thấy ngay p lẻ}\Rightarrow UCLN\left(p^2+1,p+1\right)=1;\Rightarrow\left(a,b\right)=1\Rightarrow\left(b-a,a+b\right)=1\)

thấy ngay p>b-a nên: \(p=a+b;p-1=2a-2b\text{ hay:}a+b=2b-2a+1\Leftrightarrow3a=b+1\)

đến đây thì đơn giản

Khách vãng lai đã xóa
shitbo
25 tháng 10 2020 lúc 14:49

\(16ab+1⋮a+b\Leftrightarrow16ab+4a+4b+1=\left(4a+1\right)\left(4b+1\right)⋮a+b\)

\(d=\left(4a+1,a+b\right)\Rightarrow4a+1-4a-4b=1-4b⋮d\text{ hay }4b-1⋮d\Rightarrow\left(4a+1,a+b\right)=1\)

do đó: \(4b+1⋮a+b\Rightarrow4b+1=ka+kb\text{ với k}\le3\)

\(+,k=3\Rightarrow4b+1=3a+3b\text{ hay }b+1=3a\)

k=2 thì 4b+1=2a+2b hay 2b=2a-1 

k=1 thì 3b+1=a

Khách vãng lai đã xóa
007
Xem chi tiết
Lê Nguyễn Bảo Trân
5 tháng 2 2016 lúc 9:31

+ Nếu p=2 => p+4=2+4=6 \(\div\) 2 ( Hợp số ) ( Loại )

+ Nếu p=3 => p+4 =3+4=7 ( SNT )

                     p+20=3+20=23 (SNT ) ( nhận )

+ Nếu p=3k+1 => p+20=3k+1+20=3k+21 \(\div\) 3 ( Hợp số )(Loại)

+ Nếu p = 3k + 2 => p+4=3k+2+4=3k+6 \(\div\) 3 ( Hợp số ) (loại)

Vậy : p=3

* Chú ý : \(\div\) : Chia hết

Hậu Duệ Mặt Trời
5 tháng 2 2016 lúc 9:29

số 3 đó bạn !!!

van anh ta
5 tháng 2 2016 lúc 9:30

3 , ủng hộ mk nha

Hà Vy Hoàng
Xem chi tiết
Dang Tung
2 tháng 10 2023 lúc 21:09

Để A là snt thì : x - 2 = 1 hoặc x^2 + 2x + 2 =1

=> x = 3 hoặc (x+1)^2 = 0

=> x = 3 hoặc x = -1

Thử lại : Với x = 3 thì A = 17 là snt

Với x = -1 thì A = -3 ( k là snt )

Vậy x = 3

Penta Lê
Xem chi tiết
Đồng Thiều Chí
21 tháng 8 2018 lúc 21:52

Nếu n=0 thì n + 9 = 0 + 9 = 9; n + 15 = 0 + 15 = 15 đều là hợp số (loại)

Nếu n = 1 thì n + 3 = 1 + 3 = 4; n + 7 = 1 + 7 = 8; n + 9 = 1 + 9 = 10; n + 13 = 1 + 13 = 14; n + 15 = 1 + 15 = 16 đều hợp số (loại)

Nếu n = 2 thì n + 7 = 2 + 7 = 9; n + 13 = 2 + 13 = 15 là hợp số (loại)

Nếu n = 3 thì n + 1 = 3 + 1 = 4; n + 3 = 3 + 3 = 6; n + 7 = 3 + 7 = 10; n + 9 = 3 + 9 = 12; n + 13 = 3 + 3 = 16; n + 15 = 3 +15=18 đều là hợp số (loại)

Nếu n = 4 thì n + 1 = 4 + 1 = 5; n + 3 = 4 + 3 = 7; n + 7 = 4 + 7 = 11; n + 13 = 13 + 4 = 17; n + 15 = 15 + 4 = 19; n +9= 4 + 9= 13 đều là số nguyên tố (chọn)

Nếu n = 5 thì n + 1 = 1 + 5= 6;n+ 3 = 5 + 3 = 8;n + 9 = 5 + 9 = 14;n + 13 = 5 + 13 = 18;n + 15 = 15 + 15 = 20 đều là hợp số (loại)

Xét n> 5 thì n = 5k + 1 hoặc 5k + 2 hoặc 5k + 3 hoặc 5 k + 4

Nếu n = 5k+ 1 thì n + 9 = 5k + 1 + 9 = 5k + 10 = 5x (k + 2) chia hết cho 5 (loại)

Nếu n = 5k + 2 thì n + 3 = 5k + 2 + 3 = 5k + 5 = 5 x (k+ 1) chia hết cho 5;n + 13 = 5k+ 2 + 13 = 5k+ 15 = 5 x(k+3)chia hết cho 5 (loại)

Nếu n=5k + 3 thì n + 7 = 5k + 3 + 7 = 5k + 10 = 5 x (k+2) chia hết cho 5 (loại)

Nếu n = 5k + 4 thì n + 1 = 5k + 4 + 1 = 5k + 5 = 5 x (k+ 1) chia hết cho 5 (loại)

Suy ra n < 5. Vậy n = 4 thì n + 1; n + 3;n + 9; n + 3;n + 13; n + 15 là số nguyên tố.

Đồng Thiều Chí
21 tháng 8 2018 lúc 21:54

k đê!!

Nguyễn Văn Lợi
Xem chi tiết
Đinh Thùy Linh
27 tháng 6 2016 lúc 15:42

+ Nếu p = 3 thì \(p^2+14=23\)là số nguyên tố.

+ Nếu p > 3. Vì p là số nguyên tố nên p không chia hết cho 3.

Nếu p chia 3 dư 1 thì  p = 3k + 1 và \(p^2+14=9k^2+6k+15=3\left(3k^2+2k+5\right)\)chia hết cho 3 nên không phải số nguyên tố.Nếu p chia 3 dư 2 thì  p = 3k + 2 và \(p^2+14=9k^2+6k+24=3\left(3k^2+2k+8\right)\)chia hết cho 3 nên không phải số nguyên tố.

Vậy chỉ có p = 3 thỏa mãn yêu cầu của đề bài.

What Coast
27 tháng 6 2016 lúc 15:44

Nếu p=2 => \(p^2+14\)= 22+14=18( loại )

Nếu p=3=> \(p^2+14\)=32+14=23 ( thỏa mãn )

=> Nếu p>3 => p không chia hết cho 3=>\(\hept{\begin{cases}p=3k+1\\p=3k+2\end{cases}}\)(k thuộc N*)

Nếu p= 3k+1 => \(p^2+14\)= (3k+1)2+14=9k2+6k+1+14=9k2+6k+14 chia hết cho 3 ( loại )

Nếu p=3k+2=> \(p^2+14\)= (3k+2)2+14= 9k2+12k+4+14=9k2+12k+18 chia hết cho 3 ( loại )

Vậy p=3

Mina Ngọc
Xem chi tiết