Những câu hỏi liên quan
Im A Mess
Xem chi tiết
Đào Thu Hoà
6 tháng 6 2019 lúc 13:32

Từ \(0\le x\le y\le1\) và \(2x+y\le2\Rightarrow2x^2+xy\le2x\)(nhân cả 2 vế với \(x\ge0\))

                                                                  \(\left(y-x\right)y\le y-x\)(nhân cả 2 vế của \(0\le y\le1\)với \(y-x\ge0\)(do \(x\le y\))

Cộng từng vế ta có : 

\(2x^2+xy+\left(y-x\right)y\le2x+y-x\)

\(\Leftrightarrow2x^2+y^2\le x+y\)

\(\Leftrightarrow\left(2x^2+y^2\right)^2\le\left(x+y\right)^2\)

Mặt khác \(\left(x+y\right)^2=\left(\frac{1}{\sqrt{2}}.\sqrt{2}x+1.y\right)^2\le\left(\frac{1}{2}+1\right)\left(2x^2+y^2\right)\)(bất đẳng thức Bunhiacopxki)

\(\Rightarrow\left(2x^2+y^2\right)^2\le\frac{3}{2}\left(2x^2+y^2\right).\)

\(\Leftrightarrow2x^2+y^2\le\frac{3}{2}.\)(đpcm)

Chúc học tốt 

Bình luận (0)
Hắc Thiên
Xem chi tiết
Trần Phúc Khang
18 tháng 8 2019 lúc 21:45

Ta có \(\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+xz\right)=4\)

=> \(\orbr{\begin{cases}x+y+z=2\\x+y+z=-2\end{cases}}\)

\(x+y+z=2\)

Thay vào Pt (1)

=> \(xy+z\left(2-z\right)=1\)

 => \(xy=\left(z-1\right)^2\)=> \(x,y,z\ge0\)( do \(x+y+z=2>0\))

Mà \(xy\le\left(\frac{x+y}{2}\right)^2=\left(\frac{2-z}{2}\right)^2\)

=> \(z-1\le\frac{2-z}{2}\)=> \(z\le\frac{4}{3}\)

Hoàn toàn TT => \(x,y,z\le\frac{4}{3}\)

\(x+y+z=-2\)

=> \(xy+z\left(-2-z\right)=1\)

=> \(xy=\left(z+1\right)^2\)=> \(x,y,z\le0\)( do \(x+y+z=-2< 0\))

Mà \(xy\le\left(\frac{x+y}{2}\right)^2=\left(\frac{-2-z}{2}\right)^2\)

=> \(\left(z+1\right)^2\le\left(\frac{z+2}{2}\right)^2\)

=> \(z+1\ge\frac{-z-2}{2}\)=> \(z\ge-\frac{4}{3}\)

TT => \(x,y,z\ge-\frac{4}{3}\)

Vậy \(-\frac{4}{3}\le x,y,z\le\frac{4}{3}\)

Bình luận (0)
l҉o҉n҉g҉ d҉z҉
Xem chi tiết
Tran Le Khanh Linh
26 tháng 7 2020 lúc 21:33

chứng minh \(\frac{3}{2}\ge\frac{x}{1+x^2}+\frac{y}{1+y^2}+\frac{z}{1+z^2}\)

ta có \(\left(x-1\right)^2\ge0\Leftrightarrow x^2+1\ge2x\Leftrightarrow\frac{2x}{1+x^2}\le1\)

\(\left(y-1\right)^2\ge0\Leftrightarrow y^2+1\ge2y\Leftrightarrow\frac{2y}{1+y^2}\le1\)

\(\left(z-1\right)^2\ge0\Leftrightarrow z^2+1\ge2z\Leftrightarrow\frac{2z}{1+z^2}\le1\)

\(\Rightarrow\frac{2x}{1+x^2}+\frac{2y}{1+y^2}+\frac{2x}{1+z^2}\le3\Leftrightarrow\frac{x}{1+x^2}+\frac{y}{1+y^2}+\frac{z}{1+z^2}\le\frac{3}{2}\)

chứng minh \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{3}{2}\)

áp dụng bất đẳng thức Cauchy ta có: 

\(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge3\sqrt[3]{\frac{1}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}}=\frac{3}{\sqrt{\left(1+x\right)\left(1+y\right)\left(1+z\right)}}\)

ta lại có \(\frac{\left(1+x\right)\left(1+y\right)\left(1+z\right)}{3}\ge\sqrt[3]{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\)

vậy \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{3}{\frac{\left(1+x\right)+\left(1+y\right)+\left(1+z\right)}{3}}=\frac{3}{2}\)

kết hợp ta có \(\frac{x}{1+x^2}+\frac{y}{1+y^2}+\frac{z}{1+z^2}\le\frac{3}{2}\le\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\)

Bình luận (0)
 Khách vãng lai đã xóa
Cô nàng giấu tên
Xem chi tiết
ARMY MINH NGỌC
Xem chi tiết
Huy Đào Quang
Xem chi tiết
Pham Van Hung
Xem chi tiết
tth_new
28 tháng 1 2020 lúc 19:53

Đặt \(x=a+1;y=b+1;z=c+1\Rightarrow0\le a,b,c\le2\)và \(a+b+c=3\)

Chứng minh : \(\left(a+1\right)^3+\left(b+1\right)^3+\left(c+1\right)^3\le36\)

\(\Leftrightarrow a^3+b^3+c^3+3\left(a^2+b^2+c^2\right)\le24\). Không mất tính tổng quát, giả sử \(2\ge a\ge b\ge c\ge0\) thì:

\(3a\ge a+b+c=3\Rightarrow2\ge a\ge1\Rightarrow\left(a-1\right)\left(a-2\right)\le0\)

Theo kết quả bài này thì \(a^2+b^2+c^2\le5\) (em làm thế này cho ngắn, lúc trình bày vô bài làm thì anh ghi cả chứng minh vô luôn nha!). Vậy ta chỉ cần chứng minh: \(a^3+b^3+c^3\le9\).

Ta có: \(a^3+b^3+c^3\le a^3+b^3+c^3+3bc\left(b+c\right)\)

\(=a^3+\left(b+c\right)^3=a^3+\left(3-a\right)^3\)

\(=9\left(a-1\right)\left(a-2\right)+9\le9\)

Đẳng thức xảy ra khi \(\left(a;b;c\right)=\left(2;1;0\right)\) và các hoán vị.

Bình luận (0)
 Khách vãng lai đã xóa
Cầm Dương
Xem chi tiết
Yến Nhi
Xem chi tiết