Tìm nghiệm của J(x):
J(x)=-2x^2+2x+10
Tìm nghiệm của J(x):
J(x)=-2x^2+2x+10
Nếu lớp 7 thì chắc đề sai ; Còn nếu đề đùng thì giải sau :
Để \(J\left(x\right)\) có nghiệm <=> \(-2x^2+2x+10\)
\(\Leftrightarrow-2x^2+2x-\frac{1}{2}+\frac{1}{2}+10=0\)
\(\Leftrightarrow-2\left(x^2-x+\frac{1}{4}\right)+\frac{21}{2}=0\)
\(\Leftrightarrow-2\left(x-\frac{1}{2}\right)^2=-\frac{21}{2}\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2=\frac{21}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{1}{2}=\frac{\sqrt{21}}{2}\\x-\frac{1}{2}=\frac{-\sqrt{21}}{2}\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{\sqrt{21}+1}{2}\\x=\frac{-\sqrt{21}+1}{2}\end{cases}}}\)
Vậy \(x\in\left\{\frac{-\sqrt{21}+1}{2};\frac{\sqrt{21}+1}{2}\right\}\) là nghiệm của J(x)
Tìm số tự nhiên x biết:
a) (10-2x).(3x-18)=0 b) 10 + 2x = 165: 216 c) 28 - 2.(x - 4)2=10 d) (15-x)3.(x2 + 16) = 0 e) 52x - 3 - 2.52 = 52 . 3
f) (8 - x3).(x2 + 16) = 0 j) (2x + 5) + (2x + 10) +(2x + 15) +...+(2x + 95) = 77520
Tìm GTNN
J= x^2-8x+6/x^2-2x+1
Tìm x :
a, 3x(2x - 3) - 7(2x-3) = 0 ;
b, x2(x + 1) + x(x + 1) = 0
rảnh ko có j làm
a, \(3x\left(2x-3\right)-7\left(2x-3\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(3x-7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x-3=0\\3x-7=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=\frac{7}{3}\end{cases}}\)
Vậy ....
b, \(x^2\left(x+1\right)+x\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+x\right)=0\)
\(\Leftrightarrow x\left(x+1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
Vậy x = 0 hoặc x = -1
\(3x\left(2x-3\right)-7\left(2x-3\right)=0\)
\(\Leftrightarrow\left(3x-7\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-7=0\\2x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{3}\\x=\frac{3}{2}\end{cases}}\)
Vậy \(x\in\left\{\frac{3}{2};\frac{7}{3}\right\}\)
\(x^2\left(x+1\right)+x\left(x+1\right)=0\)
\(\Leftrightarrow\left(x^2+x\right)\left(x+1\right)=0\)
\(\Leftrightarrow x\left(x+1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
Vậy \(x\in\left\{-1;0\right\}\)
j) (2x – 1)(3x + 1) – (4 – 3x)(3 – 2x) = 3
k) (2x + 1)(x + 3) – (x – 5)(7 + 2x) = 8
m) 2(3x – 1)(2x + 5) – 6(2x – 1)(x + 2) = - 6
tìm X nhé
tìm nghiệm của các đa thức sau:
a)3x-6;
b)2x-10;
c)x^2-1;
d)(x-2)*(x+3);
e)x^2-2x;
f)(x^2)+2;
g)x^3-4x;
h)3-2x
a)Đặt A (x) = 0
hay \(3x-6=0\)
\(3x\) \(=6\)
\(x\) \(=6:3\)
\(x\) \(=2\)
Vậy \(x=2\) là nghiệm của A (x)
b) Đặt B (x) = 0
hay \(2x-10=0\)
\(2x\) \(=10\)
\(x\) \(=10:2\)
\(x\) \(=5\)
Vậy \(x=5\) là nghiệm của B (x)
c) Đặt C (x) = 0
hay \(x^2-1=0\)
\(x^2\) \(=1\)
\(x^2\) \(=1:1\)
\(x^2\) \(=1\)
\(x\) \(=\overset{+}{-}1\)
Vậy \(x=1;x=-1\) là nghiệm của C (x)
d) Đặt D (x) = 0
hay \(\left(x-2\right).\left(x+3\right)=0\)
⇒ \(x-2=0\) hoặc \(x+3=0\)
* \(x-2=0\) * \(x+3=0\)
\(x\) \(=0+2\) \(x\) \(=0-3\)
\(x\) \(=2\) \(x\) \(=-3\)
Vậy \(x=2\) hoặc \(x=-3\) là nghiệm của D (x)
e) Đặt E (x) = 0
hay \(x^2-2x=0\)
⇔\(\left[{}\begin{matrix}x^2-2x\\\left(x-2\right)x\end{matrix}\right.\)
⇒\(\left(x-2\right)x\)
⇔ \(x.\left(2x-1\right)=0\)
⇔ \(\left[{}\begin{matrix}x=0\\2x-1=0\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy \(x=0\) hoặc \(x=2\) là nghiệm của E (x)
f) Đặt F (x) = 0
hay \(\left(x^2\right)+2=0\)
\(x^2\) \(=0-2\)
\(x^2\) \(=-2\)
\(x\) \(=\overset{-}{+}-2\)
Do \(\overset{+}{-}-2\) không bằng 0 nên F (x) không có nghiệm
Vậy đa thức F (x) không có nghiệm
g) Đặt G (x) = 0
hay \(x^3-4x=0\)
⇔\(\left[{}\begin{matrix}x^3-4x\\\left(x-4\right)x^2\end{matrix}\right.\)
⇒ \(\left(x-4\right)x^2=0\)
⇔ \(x.\left(4x-1\right)=0\)
⇔\(\left[{}\begin{matrix}x=0\\4x-1=0\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x=0\\x=\dfrac{1}{4}\end{matrix}\right.\)
Vậy \(x=0\) hoặc \(x=\dfrac{1}{4}\) là nghiệm của G (x)
h) Đặt H (x) = 0
hay \(3-2x=0\)
\(2x\) \(=3+0\)
\(2x\) \(=3\)
\(x\) \(=3:2\)
\(x\) \(=\dfrac{3}{2}\)
Vậy \(x=\dfrac{3}{2}\) là nghiệm của H (x)
CÂU G) MIK KHÔNG BIẾT CÓ 2 NGHIỆM HAY LÀ 3 NGHIỆM NỮA
a, x=2
b, x=5
c, x=1
d, x=2 hoặc x=-3
e, x=2
f, không có số x nào thỏa mãn
g, x=2
h, x= 1,5
x.(y-3)=-12
b,x.y=-21
c,(2x-1).(2y+1)=-35
d,(x+1).(x y -1)=3
e,(2x+1).(3y-2)=-55
j,(x-7).(x y +10)=9
g,x.y.2x=-19
a)
x | 1 | -1 | 12 | -12 | 2 | -2 | 6 | -6 | 3 | -3 | 4 | -4 |
y-3 | -12 | 12 | -1 | 1 | -6 | 6 | -2 | 2 | -4 | 4 | -3 | 3 |
y | -9 | 15 | 2 | 4 | -3 | 9 | 1 | 5 | -1 | 7 | 0 | 6 |
b)
x | 1 | -1 | 3 | -3 | 7 | -7 | 21 | -21 |
y | -21 | 21 | -7 | 7 | -3 | 3 | -1 | 1 |
c)
2x-1 | 1 | -1 | 5 | -5 | 7 | -7 | 35 | -35 |
2y+1 | -35 | 35 | -7 | 7 | -5 | 5 | -1 | 1 |
x | 1 | 0 | 3 | -2 | 4 | -3 | 18 | -17 |
y | -18 | 17 | -4 | 3 | -3 | 2 | -1 | 0 |
e)
2x+1 | 1 | -1 | 5 | -5 | 11 | -11 | 55 | -55 |
3y-2 | -55 | 55 | -11 | 11 | -5 | 5 | -1 | 1 |
x | 0 | -1 | 2 | -3 | 5 | -6 | 27 | -28 |
y | loại | 19 | -3 | loại | -1 | loại | loại | 1 |
Những câu còn lại mk hổng bt làm đâu
a)
x | 1 | -1 | 12 | -12 | 2 | -2 | 6 | -6 | 3 | -3 | 4 | -4 |
y-3 | -12 | 12 | -1 | 1 | -6 | 6 | -2 | 2 | -4 | 4 | -3 | 3 |
y | -9 | 15 | 2 | 4 | -3 | 9 | 1 | 5 | -1 | 7 | 0 | 6 |
b)
x | 1 | -1 | 3 | -3 | 7 | -7 | 21 | -21 |
y | -21 | 21 | -7 | 7 | -3 | 3 | -1 | 1 |
c)
2x-1 | 1 | -1 | 5 | -5 | 7 | -7 | 35 | -35 |
2y+1 | -35 | 35 | -7 | 7 | -5 | 5 | -1 | 1 |
x | 1 | 0 | 3 | -2 | 4 | -3 | 18 | -17 |
y | -18 | 17 | -4 | 3 | -3 | 2 | -1 | 0 |
e)
2x+1 | 1 | -1 | 5 | -5 | 11 | -11 | 55 | -55 |
3y-2 | -55 | 55 | -11 | 11 | -5 | 5 | -1 | 1 |
x | 0 | -1 | 2 | -3 | 5 | -6 | 27 | -28 |
y | loại | 19 | -3 | loại | -1 | loại | loại | 1 |
Những câu còn lại mk hổng bt làm đâu
Tìm nghiệm của đa thức sau:Q(x)=2(x^2)-2x+10
Xét đa thức: Q(x)=2x2-2x+10
Có: 2x2 >= 0
2x < 2x2
=> 2x2- 2x >= 0
Mà 10 >0
=> 2x2-2x+10 >= 10
Vậy đa thức Q(x) vô nghiệm.
Cho x2-2x+10=0
=>x2-2.x.1+12+9=0
=>(x-1)2+9=0 (vô lí vì VT>VP)
=> Q(x) vô nghiệm
Q(x)=2x2-2x+10=2(x2-x+5)=2(x2-x+1+4)
\(Q\left(x\right)=2\left(x^2-\frac{1}{2}x-\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}+4\right)\)
\(Q\left(x\right)=2\left[x\left(x-\frac{1}{2}\right)-\frac{1}{2}\left(x-\frac{1}{2}\right)+\frac{3}{4}+4\right]\)
\(Q\left(x\right)=2\left(x-\frac{1}{2}\right)\left(x-\frac{1}{2}\right)+\frac{3}{4}+4=2\left(x-\frac{1}{2}\right)^2+\frac{19}{4}\)
Vì \(2\left(x-\frac{1}{2}\right)^2\ge0\Rightarrow2\left(x-\frac{1}{2}\right)^2+\frac{19}{4}\ge\frac{19}{4}>0\)
=>Q(x) vô nghiệm
J= x^2-8x+6/x^2-2x+1