b) Chứng minh rằng P = xy(x ^ 4 - 15y) - xy(y ^ 4 + 15y) hết cho 30, với x, y là các số nguyên.
1. Với x, y là những số nguyên. Chứng minh rằng (p+1)(q+1) chia hết cho 4.
2. Với x, y là những số nguyên. Chứng minh rằng (x^2+x)(x+2) - 15y chia hết cho 3.
2. \(\left(x^2+x\right)\left(x+2\right)-15y=x\left(x+1\right)\left(x+2\right)-15y\)
Vì \(x\), \(x+1\)và \(x+2\)là 3 số nguyên liên tiếp
\(\Rightarrow x\left(x+1\right)\left(x+2\right)⋮3\)
mà \(15y⋮3\)\(\Rightarrow x\left(x+1\right)\left(x+2\right)-15y⋮3\)
hay \(\left(x^2+x\right)\left(x+2\right)-15y⋮3\)( đpcm )
Mình cảm ơn ạ !!!
chứng minh rằng B=xy(x^2-y^2)(x^2+y^2) chia hết cho 30 với mọi số nguyên x,y
chứng minh rằng với mọi số nguyên x;y ta có x5y - xy5 chia hết cho 30
Ta có: x5y-xy5=xy(x4-y4)=xy(x2-y2)(x2+y2)
=xy(x-y)(x+y)(x2+y2)
Ta cần cm bt trên chia hết cho 2,3 và 5
Nếu x,y cùng tính chẵn lẻ thì x-y chẵn=> x5y-xy5 chia hết cho 2 (1)
Nếu x,y không cùng tính chẵn lẻ thi x+y chẵn=>2 (2)
Từ (1) và (2)=> x5y-xy5 chia hết cho 2 với mọi x,y nguyên (13)
Nếu x hoặc y chia hết cho 3=>x5y-xy5 chia hết cho 3 (3)
Nếu x và y chia 3 có cùng số dư thì x-y chia hết cho 3=>x5y-xy5 chia hết cho 3 (4)
Nếu x,y chia 3 không cùng số dư thi x+y chia hết cho 3=>x5y-xy5 chia hết cho 3 (5)
Từ (3),(4) và (5)=>x5y-xy5 chia hết cho 3 với mọi x,y nguyên (14)
Nếu x hoặc y chia hết cho 5 thì x5y-xy5 chia hết cho 5 (6)
Nếu x chia 5 dư 1, y chia 5 dư 2 và ngược lại thì x2+y2 chia hết cho 5
=>x5y-xy5 chia hết cho 5 (7)
Nếu x chia 5 dư 2, y chia 5 dư 3
và ngược lại thì x+y chia hết cho 5
=>x5y-xy5 chia hết cho 5 (8)
Nếu x chia 5 dư 3, y chia 5 dư 4 và ngược lại thì
x2+y2 chia hết cho 5
=>x5y-xy5 chia hết cho 5 (9)
Nếu x chia 5 dư 1, y chia 5 dư 4 và ngược lại thì x+y chia hết cho 5
=>x5y-xy5 chia hết cho 5 (10)
Nếu x chia 5 dư 1, y chia 5 dư 3 và ngược lại thì x2+y2 chia hết cho 5
=>x5y-xy5 chia hết cho 5 (11)
Nếu x chia 5 dư 2, y chia 5 dư 4 và ngược lại thì x2+y2 chia hết cho 5
=>x5y-xy5 chia hết cho 5 (12)
Từ (6),(7),(8),(9),(10),(11)và (12)
=> x5y-xy5 chia hết cho 5 với mọi x,y nguyên (15)
Từ (13),(14) và (15) Mà (3;4;5)=1
=>x5y-xy5 chia hết cho 30 với mọi x,y nguyên
=>đpcm
chứng minh rằng nếu các cặp x,y thoả mãn các đẳng thức :
x2-3xy+2y2+x-y=0 (1) và x2-2xy+y2-5x+7y=0 (2) thì cũng thoả mãn đẳng thức xy-12x+15y=0
Đặt \(xy-12x+15y\)là (*)
Từ phương trình (1) ta có \(x^2-3xy+2y^2+x-y=0\Leftrightarrow\left(x-y\right)\left(x-2y\right)+\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x-2y+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=y\\x=2y-1\end{cases}}\)
Với \(x=y\)thay vào (2) ta có \(x^2-2x^2+x^2-5x+7x=0\Leftrightarrow x=0\Rightarrow x=y=0\)
Thay \(x=y=0\)vào (*) ta thấy 0.0-12.0+15.0=0(tm)
Với \(x=2y-1\Rightarrow\left(2y-1\right)^2-2\left(2y-1\right)y+y^2-5\left(2y-1\right)+7y=0\)
\(\Leftrightarrow4y^2-4y+1-4y^2+2y+y^2-10y+5+7y=0\)
\(\Leftrightarrow y^2-5y+6=0\Leftrightarrow\left(y-2\right)\left(y-3\right)=0\Leftrightarrow\orbr{\begin{cases}y=2\\y=3\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=5\end{cases}}}\)
Với \(x=3;y=2\)thay vào (*) ta thấy \(3.2-12.3+15.0=0\left(tm\right)\)
Với \(x=5;y=3\)thay vào (*) ta thấy \(5.3-12.5+15.3=0\left(tm\right)\)
Vậy .....
Chứng minh rằng với mọi số nguyên thì x,y thì
a) x(x^2+x)+x(x+1)chia hết cho (x+1) b) xy^2-yx^2+xy chia hết cho xy
a) x(x² + x) + x(x + 1)
= x²(x + 1) + x(x + 1)
= (x + 1)(x² + x)
= x(x + 1)² ⋮ (x + 1)
b) xy² - yx² + xy
= xy(y - x + 1) ⋮ xy
Chứng minh rằng không tồn tại các số nguyên x; y thoả mãn đẳng thức:\(12x^2+26xy+15y^2=4617\)
Chứng minh rằng không tồn tại các số nguyên x; y thoả mãn đẳng thức:\(\text{12x^2+ 26xy + 15y^2 = 4617}\)
cho x,y là các số nguyên thỏa mãn:(x^2+1)chia hết cho(xy +1). Chứng minh (y^2+1) chia hết cho (xy+1)
Vì x^2+1 chia hết xy+1 nên y^2(x^2+1) chia hết xy+1
hay x^2y^2 +y^2 chia hết xy+1.
Ta có x^2y^2+y^2=(x^2y^2 +2xy+1) +y^2 -2xy-1 Thêm và bớt 2xy+1
=(x^2y^2 +2xy+1) -2(xy+1) +y^2+1
=(xy+1)^2 -2(xy+1) +y^2+1 suy ra y^2+1 chia hết xy+1
Vì x^2+1 chia hết xy+1 nên y^2(x^2+1) chia hết xy+1
Hay x^2y^2 +y^2 chia hết xy+1.
Ta có x^2y^2+y^2=(x^2y^2 +2xy+1) +y^2 -2xy-1 Thêm và bớt 2xy+1
=(x^2y^2 +2xy+1) -2(xy+1) +y^2+1
=(xy+1)^2 -2(xy+1) +y^2+1 suy ra y^2+1 Chia hết xy+1
cho x,y là các số nguyên sao cho x^2-2xy-y và xy-2y^2-x đều chia hết cho 5 . Chứng minh rằng 2x^2+y^2+2x+y cũng chia hết cho 5