cho x là một số hữu tỉ, y là 1 số vô tỉ. Hỏi x+y là số vô tỉ hay hữu tỉ
biết x là số hữu tỉ .hỏi y là số hữu tỉ hoặc số vô tỉ
a,x+y là số vô tỉ
b,xy là số hữu tỉ
Hãy cho biết x và y là số vô tỉ hay là số hữu tỉ nếu biết:
a) x+y và x-y đều là số hữu tỉ
b) x+y và x/y đều là số hữu tỉ
cho x là một số hữu tỉ khác 0, y là một số vô tỉ. Chứng tỏ rằng x+ y và x .y là những số vô tỉ.
Giả sử x + y = z là một số hữu tỉ.
Suy ra y = z –x ta có z hữu tỉ, x hữu tỉ thì z – x là một số hữu tỉ
Hay y ∈ Q trái giả thiết y là số vô tỉ
Vậy x + y là số vô tỉ
Giả sử z = x.y là một số hữu tỉ
Suy ra y = z : x mà x ∈ Q, z ∈ Q
Suy ra y ∈ Q trái giả thiết y là số vô tỉ
Vậy xy là số vô tỉ
Cho x là số hữu tỉ khác 0, y là một số vô tỉ. Chứng tỏ rằng : x + y và x.y là những số vô tỉ.
Giả sử x + y = z là một số hữu tỉ.
Suy ra y = z –x ta có z hữu tỉ, x hữu tỉ thì z – x là một số hữu tỉ
Hay y ∈ Q trái giả thiết y là số vô tỉ
Vậy x + y là số vô tỉ
Giả sử z = x.y là một số hữu tỉ
Suy ra y = z : x mà x ∈ Q, z ∈ Q
Suy ra y ∈ Q trái giả thiết y là số vô tỉ
Vậy xy là số vô tỉ
cho x là 1 số hữu tỉ khác 0 , y là 1 số vô tỉ . CMR : x+y và x*y là những số vô tỉ
Cho x là một số hữu tỉ khác 0, y là một số vô tỉ. Chứng tỏ rắng x + y và x.y là nhứng số vô tỉ
Cho x là số hữu tỉ khác 0 và y là số vô tỉ. Chứng minh:
a) x+y là số vô tỉ
b) xy là số vô tỉ?
a) Giả sử x + y là số hữu tỉ => x + y = a (a \(\in\) Q)
=> y = a - x, là số hữu tỉ, trái với đề bài
=> điều giả sử là sai
=> x + y là số vô tỉ (đpcm)
lm tương tự vs câu b
a) Có x thuộc Q; y thuộc I
Giả sử x + y = a thuộc Q
=> y = a - x thuộc Q (vì x thuộc Q)
Điều này trái với giả thiết y thuộc I
=> Điều giả sử là sai
=> x + y là số vô tỉ
Vậy x thuộc Q; y thuộc I thì x + y là số vô tỉ.
b) Có x thuộc Q; y thuộc I
Giả sử x - y = a thuộc Q
=> y = x - a thuộc Q (vì x thuộc Q)
Điều này trái với giả thiết y thuộc I
=> Điều giả sử là sai
=> x - y là số vô tỉ
Vậy x thuộc Q; y thuộc I thì x - y là số vô tỉ.
cho x là số hữu tỉ khác 0 ; y là số vô tỉ . chứng tỏ rằng : x+y ; x-y ; x:y là những số vô tỉ
Giả sử x+y=z là một số hữu tỉ, khi đó ta có y=z-x
vì z và x thuộc Q nên z-x thuộc Q, do đó y thuộc Q. Điều này trái với đề bài.
Vậy x+y là số vô tỉ
Chứng minh tương tự x-y là số vô tỉ
Giả sử x.y=z là một số hữu tỉ, khi đó ta có y=z\x. Vì x, y thuộc Q nên z\x thuộc Q,
do đó y thuộc Q. Điều này trái với đề bài. Vậy x.y là một số vô tỉ
Chứng minh tương tự x:y là số vô tỉ
x, y có là số vô tỉ hay không nếu x+y và x/y là số hữu tỉ