B=\(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{18\cdot19\cdot20}\)giải nhanh giùm mình nhé!
Tính\(\frac{-3}{1\cdot2\cdot3}+\frac{-3}{2\cdot3\cdot4}+\frac{-3}{3\cdot4\cdot5}+...+\frac{-3}{18\cdot19\cdot20}\)
Ta có: \(\frac{-3}{1.2.3}+\frac{-3}{2.3.4}+\frac{-3}{3.4.5}+...+\frac{-3}{18.19.20}\)
\(=\frac{-3}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{18.19.20}\right)\)
\(=\frac{-3}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{18.19}-\frac{1}{19.20}\right)\)
\(=\frac{-3}{2}\left(\frac{1}{2}-\frac{1}{19.20}\right)=\frac{-3}{2}.\frac{189}{380}=\frac{-567}{760}\)
\(y=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{18\cdot19\cdot20}\)
http://olm.vn/tin-tuc/Bai-toan-106.html
tham khảo nhé, vội quá ko trình bày cho bạn được
A= \(\frac{3}{1\cdot2\cdot3}\cdot\frac{3}{2\cdot3\cdot4}............................\frac{3}{18\cdot19\cdot20}\)
A=\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\cdot\cdot\cdot+\frac{1}{18\cdot19}+\frac{1}{19\cdot20}\)
A=1/1x2 +1/2x3 +... +1/18x19 + 1/19x20
Nhận xét 1/1x2 = 1/1 -1/2 ; 1/2x3=1/2-1/3; ... ;1/18x19=1/18-1/19 ; 1/19x20=1/19-1/20
ta có A=1/1 - 1/2 + +1/2 -1/3+1/3- +1/18-1/19+1/19-1/20
A=1/1 - 1/20
A=20/20 - 1/20
A=(20-1)/20
A=19/20
Vậy A=19/20
A =\(\frac{1}{1.2}\)+\(\frac{1}{2.3}\)+\(\frac{1}{3.4}\)+ ...+\(\frac{1}{18.19}\)+\(\frac{1}{19.20}\)
A = 1 - \(\frac{1}{2}\)+\(\frac{1}{2}\)- \(\frac{1}{3}\)+\(\frac{1}{3}\)- \(\frac{1}{4}\)+....+\(\frac{1}{18}\)- \(\frac{1}{19}\)+ \(\frac{1}{19}\)- \(\frac{1}{20}\)
A = 1 - \(\frac{1}{20}\)( Vì đã triệt tiêu )
A = \(\frac{19}{20}\)
a=(1/1-1/2) + (1/2 +1/3) +(1/3+1/4)+........+(1/2016+1/2017)
a=1/1-1/2+1/2-1/3+1/3-1/4+ ........+2016-2017
a=1/1+1/2017 =2017-1/2017
a=2016/2017
chac chan 100% do ban .tk mk nha
\(ChoE=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{18\cdot19\cdot20}\)
Chứng minh rằng E<\(\frac{1}{4}\)
\(E=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{18.19.20}\)
\(E=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{18.19}-\frac{1}{19.20}\right)\)
\(E=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{19.20}\right)=\frac{1}{4}-\frac{1}{2.19.20}< \frac{1}{4}\left(đpcm\right)\)
Ta có :
\(E=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{18.19.20}=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{18.19}-\frac{1}{19.20}\)
\(E=\frac{1}{2}-\frac{1}{380}=\frac{189}{380}< \frac{95}{380}=\frac{1}{4}\)
Vậy \(E< \frac{1}{4}\)
Chúc bạn học tốt ~
Àk nhầm rùi :
Ta có :
\(E=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{18.19.20}\)
\(\Leftrightarrow\)\(E=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{18.19.20}\right)\)
\(\Leftrightarrow\)\(E=\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{18.19}-\frac{1}{19.20}\right)\)
\(\Leftrightarrow\)\(E=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{19.20}\right)=\frac{1}{4}-\frac{1}{2.19.20}< \frac{1}{4}\)
Vậy \(E< \frac{1}{4}\)
Học tốt :)
1) Tính
a)\(\frac{13}{15}+\frac{13}{35}+\frac{13}{63}+\frac{13}{99}\)
b)\(\left(\frac{15}{1\cdot2\cdot3}+\frac{15}{2\cdot3\cdot4}+\frac{15}{3\cdot4\cdot5}+.....+\frac{15}{18\cdot19\cdot20}\right)\cdot x=1\)
a)\(\frac{13}{15}+\frac{13}{35}+\frac{13}{63}+\frac{13}{99}\)
\(=\frac{13}{3.5}+\frac{13}{5.7}+\frac{13}{7.9}+\frac{13}{9.11}\)
\(=\frac{13}{2}\left(\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{9}-\frac{1}{11}\right)\)
\(=\frac{13}{2}\left(\frac{1}{3}-\frac{1}{11}\right)\)
\(=\frac{13}{2}\cdot\frac{8}{33}\)
\(=\frac{52}{33}\)
a) Đặt A= 13/15 + 13/35 + 13/63 + 13/99
A = 13/2 ( 2/15 + 2/35 + 2/63 + 2/99)
A= 13/2 ( 2/ 3.5 + 2/5.7 + 2/7.9 + 2/9.11)
A= 13/2 ( 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + 1/9 - 1/11)
A= 13/2 ( 1/3 - 1/11)
A= 13/2 . 8/33
A= 52/33
\(b,\)\(\left(\frac{15}{1.2.3}+\frac{15}{2.3.4}+\frac{15}{3.4.5}+...+\frac{15}{18.19.20}\right).x=1\)
\(\left[\frac{15}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{15}{18.19.20}\right)\right].x=1\)
\(\left[\frac{15}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+\frac{1}{4.5}+...+\frac{1}{18.19}-\frac{1}{19.20}\right)\right].x=1\)
\(\left[\frac{15}{2}.\left(\frac{1}{1.2}-\frac{1}{19.20}\right)\right].x=1\)
\(\left[\frac{15}{2}.\frac{189}{380}\right].x=1\)
\(\frac{567}{152}.x=1\)
\(x=1-\frac{567}{152}\)
\(\Rightarrow x=-\frac{415}{152}\)
Tính nhanh biểu thức sau:
\(\frac{2}{1\cdot2}+\frac{2}{2\cdot3}+\frac{2}{3\cdot4}+...+\frac{2}{18\cdot19}+\frac{2}{19\cdot20}\)
Ta có: \(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+.........+\frac{2}{18.19}+\frac{2}{19.20}\)
= \(\frac{2}{1}-\frac{2}{2}+\frac{2}{2}-\frac{2}{3}+\frac{2}{3}-\frac{2}{4}+.......+\frac{2}{18}-\frac{2}{19}+\frac{2}{19}-\frac{2}{20}\)
=\(\frac{2}{1}-\frac{2}{20}=\frac{40}{20}-\frac{2}{20}=\frac{38}{20}=\frac{19}{10}\).
tính nhanh]
b)\(\frac{1\cdot10+2\cdot19+3\cdot18+4\cdot17+.....+18\cdot3+19\cdot2+20\cdot1}{20\cdot\left(1+2+3+.....+19+20\right)-\left(1\cdot2+2+3+3\cdot4+.....+19\cdot20\right)}\)
1.tính c = \(\left(1\cdot2\cdot3\cdot4+2\cdot3\cdot4\cdot5+...+18\cdot19\cdot20\cdot21\right)-5-10-15-...-200\)
2. tính d = \(\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+...+\dfrac{1}{18\cdot19\cdot20}-\dfrac{3}{1\cdot2}-\dfrac{3}{2\cdot3}-...-\dfrac{3}{19\cdot20}\)
3.tìm x: \(2\left(x-3\right)-3\left(1-2x\right)=4+4\left(1-x\right)\)
4.tìm x: \(\dfrac{x-2}{2}-\dfrac{1+x}{3}=\dfrac{4-3x}{4}-1\)
giải nhanh giùm tớ nhé. ghi cả lời giả ra kìa
3/ \(2\left(x-3\right)-3\left(1-2x\right)=4+4\left(1-x\right)\)
\(\Leftrightarrow2x-6-3+6x=4+4-4x\)
\(\Leftrightarrow8x-9=8-4x\)
\(\Leftrightarrow8x+4x=8+9\)
\(\Leftrightarrow12x=17\)
\(\Leftrightarrow x=\dfrac{17}{12}\)
Vậy \(x=\dfrac{17}{12}\)
4/ \(\dfrac{x-2}{2}-\dfrac{1+x}{3}=\dfrac{4-3x}{4}-1\)
\(\Leftrightarrow6\left(x-2\right)-4\left(1+x\right)=3\left(4-3x\right)-12\)
\(\Leftrightarrow6x-12-4-4x=12-9x-12\)
\(\Leftrightarrow6x-4-4x=12-9x\)
\(\Leftrightarrow2x-4=12-9x\)
\(\Leftrightarrow2x+9x=12+4\)
\(\Leftrightarrow11x=16\)
\(\Leftrightarrow x=\dfrac{16}{11}\)
Vậy \(x=\dfrac{16}{11}\)