\(\left(\frac{13}{4}-x\frac{2}{3}\right)\cdot3=4\)
Tính giá trị biểu thức
a,\(A=\frac{24\cdot47-23}{24+47-23}\cdot\frac{3+\frac{3}{7}-\frac{3}{11}+\frac{3}{1001}-\frac{3}{13}}{\frac{9}{1001}-\frac{9}{13}+\frac{9}{7}-\frac{9}{11}+9}\)
b,\(M=\frac{1+2+2^2+2^3+...+2^{2012}}{2^{2014}-2}\)
c,\(A=81\cdot\left[\frac{12-\frac{12}{7}-\frac{12}{289}-\frac{12}{85}}{4-\frac{4}{7}-\frac{4}{289}-\frac{4}{85}}:\frac{5+\frac{5}{13}+\frac{5}{169}+\frac{5}{91}}{6+\frac{6}{13}+\frac{6}{169}+\frac{6}{91}}\right]:\frac{158158158}{711711711}\)
d,\(A=\frac{5\cdot\left(2^2.3^2\right)^9\cdot\left(2^2\right)^6-2\cdot\left(2^2\cdot3\right)^{14}\cdot3^4}{5\cdot2^{28}\cdot3^{18}-7\cdot2^{29}\cdot3^{18}}\)
Bài 1 .\(A=\frac{2^{12}\cdot3^5-4^6\cdot9^2}{\left(2^2\cdot3\right)^6+8^4\cdot3^5}-\frac{5^{10}\cdot7^3-25^5\cdot49^2}{\left(125\cdot7\right)^3+5^{9\cdot14^3}}\)
Bài 2 .\(\frac{37-x}{x+13}=\frac{3}{7}\)
Bài 3 . \(x=\frac{y}{2}=\frac{z}{3}và4x-3y+2z=36\)
Bài 4 . \(x:y:z=3:4:5và2x^2+2y^2-3z^2=-100\)AI LÀM ĐƯỢC THÌ GIÚP MÌNH VỚI NHA!
Tính tổng :
a) \(A=\frac{5}{2\cdot1}+\frac{4}{1\cdot11}+\frac{3}{11\cdot14}+\frac{1}{14\cdot15}+\frac{13}{15\cdot28}\)
b) \(B=\frac{-1}{20}+\frac{-1}{30}+\frac{-1}{42}+\frac{-1}{56}+\frac{-1}{72}+\frac{-1}{90}\)
c) \(C=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)}\)
d) \(D=\frac{1}{1\cdot2\cdot3\cdot4}+\frac{1}{2\cdot3\cdot4\cdot5}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}\)
e) \(E=\left(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{37\cdot38\cdot39}\right)\cdot1482\cdot185\cdot8\)
Tính tổng :
a) \(A=\frac{5}{2\cdot1}+\frac{4}{1\cdot11}+\frac{3}{11\cdot14}+\frac{1}{14\cdot15}+\frac{13}{15\cdot28}\)
b) \(B=\frac{-1}{20}+\frac{-1}{30}+\frac{-1}{42}+\frac{-1}{56}+\frac{-1}{72}+\frac{-1}{90}\)
c) \(C=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)}\)
d) \(D=\frac{1}{1\cdot2\cdot3\cdot4}+\frac{1}{2\cdot3\cdot4\cdot5}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}\)
e) \(E=\left(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{37\cdot38\cdot39}\right)\cdot1482\cdot185\cdot8\)
\(A=\frac{5}{2.1}+\frac{4}{1.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\)
\(\frac{A}{7}=\frac{5}{2.7}+\frac{4}{7.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\)
\(\frac{A}{7}=\frac{7-2}{2.7}+\frac{11-7}{7.11}+\frac{14-11}{11.4}+\frac{15-14}{14.15}+\frac{28-15}{15.28}\)
\(\frac{A}{7}=\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{15}+\frac{1}{15}-\frac{1}{28}=\frac{1}{2}-\frac{1}{28}=\frac{13}{28}\)
\(A=7.\frac{13}{28}\)
\(A=\frac{13}{4}\)
\(B=\frac{2^{12}\cdot3^5-4^6\cdot9^2}{\left(2^2\cdot3\right)^6+8^4\cdot3^5}-\frac{56^{10}\cdot7^3-25^5\cdot49^2}{\left(125\cdot7\right)^3+5^9\cdot14^3}\)
\(TínhA=\frac{2^{12}\cdot3^5-4^6\cdot9^2}{\left(2^2\cdot3\right)^6+8^4\cdot3^5}-\frac{5^{10}\cdot7^3-25^5\cdot49^2}{\left(125\cdot7\right)^3+5^9\cdot14^3}\)
Tính A:\(\frac{2^{12}\cdot3^5-4^6\cdot9^2}{\left(2^2\cdot3\right)^6+8^4\cdot3^5}-\frac{5^{10}\cdot7^3-25^5\cdot49^2}{\left(125\cdot7\right)^3+5^9\cdot14^3}\)
\(\frac{2}{2\cdot3}+\frac{2}{3\cdot4}+\frac{2}{4\cdot5}+............+\frac{2}{x+\left(x+1\right)}=\frac{2008}{2010}\)
\(\frac{2}{2.3}\)+ \(\frac{2}{3.4}\)+ \(\frac{2}{4.5}\)+........+ \(\frac{2}{x+\left(x+1\right)}\)= \(\frac{2008}{2010}\)
= 2 . ( \(\frac{1}{2.3}\)+ \(\frac{1}{3.4}\)+ \(\frac{1}{4.5}\)+..........+ \(\frac{1}{x+\left(x+1\right)}\)= \(\frac{2008}{2010}\)
= 2 . ( \(\frac{1}{2}\)- \(\frac{1}{3}\)+ \(\frac{1}{3}\)- \(\frac{1}{4}\)+ \(\frac{1}{4}\)- \(\frac{1}{5}\)+.........+ \(\frac{1}{x}\)- \(\frac{1}{x+1}\)= \(\frac{2008}{2010}\)
= 2 . ( \(\frac{1}{2}\)- \(\frac{1}{x+1}\)) = \(\frac{2008}{2010}\)
= ( \(\frac{1}{2}\)- \(\frac{1}{x+1}\)) = \(\frac{2008}{2010}\): 2
= ( \(\frac{1}{2}\)- \(\frac{1}{x+1}\)) = \(\frac{2008}{2010}\). \(\frac{1}{2}\)
= ( \(\frac{1}{2}\)- \(\frac{1}{x+1}\)) = \(\frac{502}{1005}\)
= \(\frac{1}{x+1}\)= \(\frac{1}{2}\)- \(\frac{502}{1005}\)
= \(\frac{1}{x+1}\)= \(\frac{1}{2010}\)
\(\Rightarrow\)\(x+1\)= 2010
\(\Leftrightarrow\) \(x\) = 2010 - 1
\(\Rightarrow\) \(x\)= 2009
Vậy \(x\)= 2009
\(\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+.....+\frac{2}{x\left(x+1\right)}=\frac{2008}{2010}\)
\(2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.....+\frac{1}{x\left(x+1\right)}\right)=\frac{1004}{1005}\)
\(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{1004}{1005}\)
\(2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{1004}{1005}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{1004}{1005}:2\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{502}{1005}\)
\(\frac{1}{x+1}=\frac{1}{2}-\frac{502}{1005}\)
\(\frac{1}{x+1}=\frac{1}{2010}\)
\(=>x+1=2010\)
\(=>x=2009\)
Vậy \(x=2009\)
1) Tính
a)\(\frac{13}{15}+\frac{13}{35}+\frac{13}{63}+\frac{13}{99}\)
b)\(\left(\frac{15}{1\cdot2\cdot3}+\frac{15}{2\cdot3\cdot4}+\frac{15}{3\cdot4\cdot5}+.....+\frac{15}{18\cdot19\cdot20}\right)\cdot x=1\)
a)\(\frac{13}{15}+\frac{13}{35}+\frac{13}{63}+\frac{13}{99}\)
\(=\frac{13}{3.5}+\frac{13}{5.7}+\frac{13}{7.9}+\frac{13}{9.11}\)
\(=\frac{13}{2}\left(\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{9}-\frac{1}{11}\right)\)
\(=\frac{13}{2}\left(\frac{1}{3}-\frac{1}{11}\right)\)
\(=\frac{13}{2}\cdot\frac{8}{33}\)
\(=\frac{52}{33}\)
a) Đặt A= 13/15 + 13/35 + 13/63 + 13/99
A = 13/2 ( 2/15 + 2/35 + 2/63 + 2/99)
A= 13/2 ( 2/ 3.5 + 2/5.7 + 2/7.9 + 2/9.11)
A= 13/2 ( 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + 1/9 - 1/11)
A= 13/2 ( 1/3 - 1/11)
A= 13/2 . 8/33
A= 52/33
\(b,\)\(\left(\frac{15}{1.2.3}+\frac{15}{2.3.4}+\frac{15}{3.4.5}+...+\frac{15}{18.19.20}\right).x=1\)
\(\left[\frac{15}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{15}{18.19.20}\right)\right].x=1\)
\(\left[\frac{15}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+\frac{1}{4.5}+...+\frac{1}{18.19}-\frac{1}{19.20}\right)\right].x=1\)
\(\left[\frac{15}{2}.\left(\frac{1}{1.2}-\frac{1}{19.20}\right)\right].x=1\)
\(\left[\frac{15}{2}.\frac{189}{380}\right].x=1\)
\(\frac{567}{152}.x=1\)
\(x=1-\frac{567}{152}\)
\(\Rightarrow x=-\frac{415}{152}\)