Cho hình thoi ABCD có góc BAD=60 độ. Trên các cạnh AB, BC lần lượt lấy các điểm M, N sao cho BM+BN=BD
a, CMR tam giác DAM= tam giác DBN
b, CMR tam giác DMN đều
Cho tam giác ABC vuông cân tại A. Trên cạnh BC lấy điểm M, N sao cho BM=MN=NC. lấy các điểm E, F lần lượt thuộc các cạnh AB, AC sao cho EM, FN vuông góc BC
a,CMR tam giác BEM vuông cân
b,CMR MNFE là hình vuông
a: Xét ΔBEM vuông tại M có \(\widehat{B}=45^0\)
nên ΔBEM vuông cân tại M
b: ME\(\perp\)BC
NF\(\perp\)BC
Do đó: ME//NF
Xét ΔCNF vuông tại N có \(\widehat{NCF}=45^0\)
nên ΔCNF vuông cân tại N
=>CN=NF
CN=NF
BM=ME
CN=NM=MB
Do đó: CN=NF=BM=ME=NM
Xét tứ giác NMEF có
NF//ME
NF=ME
Do đó: NMEF là hình bình hành
Hình bình hành NMEF có NM=NF
nên NMEF là hình thoi
Hình thoi NMEF có \(\widehat{FNM}=90^0\)
nên NMEF là hình vuông
Cho hình vuông ABCD cạnh a có điểm M bất kì trên cạnh CD. Lấy điểm N trên cạnh BC sao cho MA là tia phân giác của góc DMN. Kẻ AH vuông góc MN tại H
a, CMR AB=AH
b, CMR tam giác ANH=ANB
c, Tính số đo góc MAN
d, CMR chu vi tam giác CMN không đổi khi điểm M di chuyển trên cạnh CD
a: Xét ΔADM vuông tại D và ΔAHM vuông tại H có
AM chung
\(\widehat{DMA}=\widehat{HMA}\)
Do đó: ΔADM=ΔAHM
=>AD=AH
mà AD=AB
nên AH=AB
b: Xét ΔAHN vuông tại H và ΔABN vuông tại B có
AN chung
AH=AB
Do đó: ΔAHN=ΔABN
c: \(\widehat{MAN}=\widehat{MAH}+\widehat{NAH}\)
\(=\dfrac{1}{2}\left(\widehat{DAH}+\widehat{BAH}\right)\)
\(=\dfrac{1}{2}\cdot90^0=45^0\)
Bài 1 : cho hìh thoi abcd cs A=60°. Trên cạnh ab,ac lần lượt láy hai điểm m,n sao cho bm=bn. Chứng minh tam giác MDN là tam giác đều.
bÀi 2: cho hình thoi ABCD cs A=60°. Trên AD và CD láy các điểm M,N sao cho AM + CN = AD. Gọi P là điểm đối xứng của N qua BC, MP cắt BC tại Q. Tứ giác MDCQ là hìh j?
Cho hình vuông ABCD cạnh a có điểm M bất kì trên cạnh CD. Lấy điểm N trên cạnh BC sao cho MA là tia phân giác của góc DMN. Kẻ AH vuông góc MN tại H
a, CMR AB=AH
b, CMR tam giác ANH=ANB
c, Tính số đo góc MAN
d, CMR chu vi tam giác CMN không đổi khi điểm M di chuyển trên cạnh CD
Bài 1: Hình thoi ABCD có góc A = 60 độ . Trên cạnh AD lấy điểm M, trên cạnh DC lấy điểm N sao cho AM= DN . Hỏi tam giác BMN là tam giác gì , vì sao?
Bài 2: Cho hình thang ABCD( AB//CD) . Gọi EFGH theo thứ tự lần lượt là trung điểm của các cạnh AB, BC, CD, DA. Hỏi tứ giác EFGH là hình gì, vì sao?
giải giúp mình với ạ
Bn ơi, vt lại hộ mik với
Đau đầu qué!!!!!!!
Cho tam giác ABC đều. Trên Các đoạn AB, BC, AC lần lượt lấy các điểm M,N,P Sao cho AM=BN=CP.
a, CMR: Tam giác MNP đều
b, có O-giao điểm các đường trung trực của tam giác ABC. CMR: O- giao điểm các đường trun trực tam giác MNP.
Cho hình thoi ABCD có góc A = 60o Đường thằng d cắt 2 cạnh AB, BC lần lượt tại M,N sao cho MB + NB = CD. Chứng minh rằng tam giác DMN đều
1. Cho tam giác ABC có AB=2, AC=3 đường phân giác AD=1,2. Tính góc BAC.
2.Cho tam giác ABC cân tại A, góc A= 155 độ. Trên BC lấy M, N sao cho AM vuông góc AC, AN vuông góc AB. CMR: BM^2=BC.MN.
3. Cho tam giác ABC cân tại A, đặt BC=a, AC=b. Vẽ các đường phân giác BD, CE.
a) CM: DE//BC
b) Tính DE từ đó suy ra 1/DE=1/a+1/b.
4) Cho tam giác ABC đều. Gọi O là trung điểm BC. Trên các cạnh AB và AC lần lượt lấy các điểmM,N sao cho góc MON=60 độ,CMR:
a) tam giác OMB đồng dạng tam giác NOC. từ đó suy ra BM.CN ko đổi.
b) các tia MO,NO lần lượt là các tia phân giác của góc BMN và góc CNM.
c) chu vi tam giác AMN ko đổi.
Giúp mình với nha, mình cần gấp trong hôm nay.