cho n nguyên dương sao cho 5n+1 và 6n+7 là số chính phương. Chứng minh 21n-19 là hợp số
Bài 1:Cho n€N* thỏa mãn 5n+1 và 6n+7 là số chính phương. Hỏi 21n-19 là số nguyên tố hay hợp số
Bài 2: Tìm các số nguyên tố p,q biết p2 + 3pq+ q2 là số chính phương
Cho số nguyên dương n thỏa mãn 6n2+5n+1 là số chính phương
a) Chứng minh n chia hết cho 40
b) Chứng minh 5n+3 là hợp số
c) Tìm n nguyên dương sao cho 2n+9 là số nguyên tố
Cho số nguyên dương n thỏa mãn 6n2 + 5n + 1 là một số chính phương. Chứng minh rằng : n chia hết cho 40
Ta có: \(A=6n^2+5n+1=\left(3n+1\right)\left(2n+1\right)\)là số chính phương.
\(\Rightarrow3n+1,2n+1\)là số chính phương.
\(\Rightarrow3n+1=x^2;2n+1=y^2\)
\(\Rightarrow y\)lẻ.
\(\Rightarrow y=2k+1\Rightarrow2n+1=\left(2k+1\right)^2\Rightarrow n=2k\left(k+1\right)\)
\(\Rightarrow n\)chẵn.
\(\Rightarrow3n+1\) lẻ
\(\Rightarrow x\)lẻ.
\(\Rightarrow n=x^2-y^2⋮8\)
Lại có: \(x^2+y^2=5n+2\) chia \(5\)dư \(2\)
Vì số chính phương chia \(5\)dư \(0,1,4\)
\(\Rightarrow x^2,y^2\)chia \(5\)dư \(1\)
\(\Rightarrow x^2-y^2⋮5\)
\(\Rightarrow n⋮5\)
\(\Rightarrow n⋮5.8=40\left(đpcm\right)\)
Cho n là số nguyên dương. Chứng minh rằng: 2n+1 và 3n+1 là các số chính phương thì 5n+3 không là số nguyên tố.
Cho số nguyên dương n thỏa mãn 2n+1 và 3n+1 là các số chính phương. CMR: 6n+5 là hợp số
tìm n nguyên dương sao cho n+1 , 6n+1 và 20n+1 là số chính phương.
Tìm số nguyên dương n sao cho 5n - 7; 3n - 4; 7n + 3; 6n + 1; 9n + 5 là các số nguyên tố
1 cho n là số nguyên dương 2n+1 và 3n+1 là các số chính phương. chứng minh 5n+3 ko là số nguyên tố
2 cho a,b,c,d dương thay đổi sao cho a+b+c+d = 1. tìm gtln của biểu thức P = abc+bcd+dca+dab
e cần gấp ai lm đc thì giúp e nha r hứa cho 3 tik mỗi ngày
Câu 1/ Ta có: 2n + 1 = a2 ; 3n + 1 = b2
=> 4(2n + 1) - (3n + 1) = 4a2 - b2
<=> 5n + 3 = (2a - b)(2a + b)
Ta thấy 2a + b > 1
Giờ chỉ việc chứng minh
2a - b = 1 (vô nghiệm là có thể kết luận rồi nhé )
Cho các số nguyên dương a,b thỏa mãn ab+1 là số chính phương. Chứng minh rằng tồn tại số nguyên dương c sao cho ac+1 và bc+1 cùng là số chính phương
Gỉa sử ab+1=n2 (n thuộc N)
Cho c=a+b+2n.Ta có:
* ac+1=a(a+b+2n)+1
=a2+2na+ab+1=a2+2na+n2=(a+n)2
* bc +1=b(a+b+2n)+1=b2+2nb+ab+1
=b2+2nb+n2=(b+n)2
Vậy ac+1 và bc+1 đều là số chính phương.