Tìm ưcln của 2n + 2 và 2n ( n E N*)
a. Tìm ƯCLN(2n+2;2n); (n ∈ N*) .
b. Tìm ƯCLN(3n+2 ;2n+1) với n ∈ N
a, Gọi d là ƯCLN(2n+2;2n)
=> 2 n + 2 ⋮ d 2 n ⋮ d ⇒ 2 n + 2 - 2 n = 2 ⋮ d
Mà d là ƯCLN nên d là số lớn nhất và cũng là ước của 2.
Vậy d = 2
b, Gọi ƯCLN(3n+2 ;2n+1) = d
Ta có: 3 n + 2 ⋮ d 2 n + 1 ⋮ d ⇒ 2 3 n + 2 ⋮ d 3 2 n + 1 ⋮ d
=>[2(3n+2) – 3(2n+1)] = 1 ⋮ d
Vậy d = 1
tìm ƯCLN của 2n +1 và \(\frac{n+1}{2}\)với n e N
. Tìm UCLN của n(n+1)2n(n+1)2 và 2n+12n+1
Giải
Gọi d là ước chung lớn nhất của n(n+1)2n(n+1)2 và 2n+12n+1
Ta thấy : n(n+1)2n(n+1)2 ⋮⋮ dd.
⇒4.n(n+1)2⇒4.n(n+1)2 ⋮⋮ dd
⇒2n(n+1)⇒2n(n+1) ⋮⋮ d⇒2n2+2nd⇒2n2+2n ⋮⋮ dd
Ta lại có:
2n+12n+1 ⋮⋮ d⇒n(2n+1)d⇒n(2n+1) ⋮⋮ dd
⇒2n2+n⇒2n2+n ⋮⋮ dd
Do đó:
2n2+2n−(2n2+n)2n2+2n−(2n2+n) ⋮⋮ d⇒nd⇒n ⋮⋮ dd
Mặt khác, n chia hết d suy ra 2n chia hết d mà 2n + 1 chia hết d.
Do đó: 1 chia hết d. Vậy UCLN của hai số đã cho ở đề bài là 1.
Thế giới này trở nên bị tổn thương quá nhiều không phải bởi vì sự hung bạo của những kẻ xấu xa mà chính bởi vì sự im lặng của những người tử tế
Gọi d là ước chung lớn nhất của n(n+1)2n(n+1)2 và 2n+12n+1
Ta thấy : n(n+1)2n(n+1)2 ⋮⋮ dd.
⇒4.n(n+1)2⇒4.n(n+1)2 ⋮⋮ dd
⇒2n(n+1)⇒2n(n+1) ⋮⋮ d⇒2n2+2nd⇒2n2+2n ⋮⋮ dd
Ta lại có:
2n+12n+1 ⋮⋮ d⇒n(2n+1)d⇒n(2n+1) ⋮⋮ dd
⇒2n2+n⇒2n2+n ⋮⋮ dd
Do đó:
2n2+2n−(2n2+n)2n2+2n−(2n2+n) ⋮⋮ d⇒nd⇒n ⋮⋮ dd
Mặt khác, n chia hết d suy ra 2n chia hết d mà 2n + 1 chia hết d.
Do đó: 1 chia hết d. Vậy UCLN của hai số đã cho ở đề bài là 1.
c) n^ 2 +2n và n ^3 +3n ^2 +2n+1
CMR cặp số này có ƯCLN là 1
MN kíu e với ạ
Đặt `(n^2+2n, n^3+3n^2+2n+1)=d`.
Ta có: `n^2+2n vdots d <=> n(n+1)(n+2) vdots d`.
`<=> n^3+3n^2+2n+1-n^3-3n^2-2n vdots d`.
`<=> 1 vdots d => d=1`.
Tìm ƯCLN (2n+1) và 2n (n+1) (n€N)
Biết rằng 2n+1 và 7n +6 (n e N) là hai số nguyên tố cùng nhau .Tim ƯCLN của 2n+1 và 7n+6
tìm ƯCLN của :
a, 318 và 214
b, 2n + 5 và 2n + 7 ( n thuộc N )
a, Ta có :
\(318=2.3.53\)
\(214=2.107\)
=> UCLN ( 318 ; 214 ) = 2
b,
Đặt UCLN ( 2n + 5 , 2n + 7 ) = d
=> 2n + 5 chia hết cho d , 2n + 7 chia hết cho d
=> 2n + 5 - 2n - 7 chia hết cho d
=> - 2 chia hết chop d
=> d thuộc U ( -2 ) = { -2 ; -1 ; 1 ; 2 }
Mà d lớn nhất => d = 2
Vậy UCLN ( 2n + 5 , 2n + 7 ) là 2
tìm ƯCLN của a và b=1+2+3+...+n= 2n+1 (n thuộc N )
Cho n e N,tìm ƯCLN của :
a) 4n + 3 và 2n + 1
b) 6n + 1 và 4n + 5 với n \(\ne\)13k + 2
a) Gọi d là ước chung lớn nhất của 4n + 3 và 2n + 1 ( n e N )
Ta có : 4n + 3 \(⋮\)d ( 1 )
2n + 1 \(⋮\)d hay 2 ( 2n + 1 ) \(⋮\)d = 4n + 2 \(⋮\)d ( 2 )
Từ ( 1 ) và ( 2 ) suy ra : ( 4n + 3 ) - ( 4n + 2 ) \(⋮\)d
hay 1 \(⋮\)d suy ra d = 1
Vậy ƯCLN ( 4n + 3 ; 2n + 1 ) = 1
b) Gọi d là ước chung lớn nhất của 6n + 1 và 4n + 5
Ta có : 6n + 1 \(⋮\)d hay 2 ( 6n + 1 ) \(⋮\)d = 12n + 2 \(⋮\)d ( 1 )
4n + 5 \(⋮\)d hay 3 ( 4n + 5 ) \(⋮\)d = 12n + 15 \(⋮\)d ( 2 )
Từ ( 1 ) và ( 2 ) suy ra
( 12n + 15 ) - ( 12n + 2 ) \(⋮\)d
Hay 13 \(⋮\)d
Suy ra d e ƯC ( 13 ) = { 1 ; 13 }
Ta có 6n + 1 chia hết cho 13 suy ra 2 ( 6n + 1 ) chia hết cho 13 suy ra 13n - ( n - 2 ) chia hết cho 13
suy ra n - 2 chia hết cho 13 suy ra n - 2 = 13k suy ra n = 13k + 2 ( k e N )
Suy ra với n \(\ne\)13k + 2 thì 6n + 1 không chia hết cho 13 nên d không thể là 13.
Do đó d = 1
Vậy ƯCLN ( 6n + 1 , 4n + 5 ) = 1
) Gọi d là ước chung lớn nhất của 4n + 3 và 2n + 1 ( n e N )
Ta có : 4n + 3 ⋮d ( 1 )
2n + 1 ⋮d hay 2 ( 2n + 1 ) ⋮d = 4n + 2 ⋮d ( 2 )
Từ ( 1 ) và ( 2 ) suy ra : ( 4n + 3 ) - ( 4n + 2 ) ⋮d
hay 1 ⋮d suy ra d = 1
Vậy ƯCLN ( 4n + 3 ; 2n + 1 ) = 1
b) Gọi d là ước chung lớn nhất của 6n + 1 và 4n + 5
Ta có : 6n + 1 ⋮d hay 2 ( 6n + 1 ) ⋮d = 12n + 2 ⋮d ( 1 )
4n + 5 ⋮d hay 3 ( 4n + 5 ) ⋮d = 12n + 15 ⋮d ( 2 )
Từ ( 1 ) và ( 2 ) suy ra
( 12n + 15 ) - ( 12n + 2 ) ⋮d
Hay 13 ⋮d
Suy ra d e ƯC ( 13 ) = { 1 ; 13 }
Ta có 6n + 1 chia hết cho 13 suy ra 2 ( 6n + 1 ) chia hết cho 13 suy ra 13n - ( n - 2 ) chia hết cho 13
suy ra n - 2 chia hết cho 13 suy ra n - 2 = 13k suy ra n = 13k + 2 ( k e N )
Suy ra với n ≠ 13k + 2 thì 6n + 1 không chia hết cho 13 nên d không thể là 13.
) Gọi d là ước chung lớn nhất của 4n + 3 và 2n + 1 ( n e N ) T
a có : 4n + 3 ⋮d ( 1 )
2n + 1 ⋮d hay 2 ( 2n + 1 ) ⋮d = 4n + 2 ⋮d ( 2 )
Từ ( 1 ) và ( 2 ) suy ra : ( 4n + 3 ) - ( 4n + 2 ) ⋮d hay 1 ⋮d
suy ra d = 1 Vậy ƯCLN ( 4n + 3 ; 2n + 1 ) = 1
b) Gọi d là ước chung lớn nhất của 6n + 1 và 4n + 5
Ta có : 6n + 1 ⋮d hay 2 ( 6n + 1 ) ⋮d = 12n + 2 ⋮d ( 1 )
4n + 5 ⋮d hay 3 ( 4n + 5 ) ⋮d = 12n + 15 ⋮d ( 2 )
Từ ( 1 ) và ( 2 ) suy ra ( 12n + 15 ) - ( 12n + 2 ) ⋮d Hay 13 ⋮d
Suy ra d e ƯC ( 13 ) = { 1 ; 13 }
Ta có 6n + 1 chia hết cho 13 suy ra 2 ( 6n + 1 ) chia hết cho 13
suy ra 13n - ( n - 2 ) chia hết cho 13
suy ra n - 2 chia hết cho 13
suy ra n - 2 = 13k
suy ra n = 13k + 2 ( k e N )
Suy ra với n ≠ 13k + 2 thì 6n + 1 không chia hết cho 13 nên d không thể là 13.
tìm ưcln (2n+3;4n+3) với n E N