cho hai số hưu tỉ a/b và c/d (a,b,c,d thuộc z b>0,d>0)
cguwngs tỏ rằng ad,cd khi và chỉ khi a/b<c/d
cho hai số hưu tỉ a/b và c/d (a,b,c,d thuộc z b>0,d>0)
chứng
tỏ rằng ad,cd khi và chỉ khi a/b<c/d
Bạn đánh lại đề nhé. Chõ chứng tỏ rằng : ad,cd á bạn.
Cho hai số hữu tỉ a b v à c d ( a,b,c, d ∈ Z, b > 0, d > 0). Chứng minh ad < bc khi và chỉ khi a b < c d
Nếu ad < bc => a d b d < b c b d = > a b < c d
Ngược lại nếu a b < c d = > a b . b d < c d . b d = > a d < b c
Cho hai số hữu tỉ a/b và c/d (b, d >0 )
Chứng tỏ a/b < c/d
Khi và chỉ khi ad < bc
Ta có :
\(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{a}{b}-\frac{c}{d}< 0\Leftrightarrow\frac{ad-bc}{bd}< 0\)
Mà \(b>0;d>0\Rightarrow bd>0\)
Vậy \(\frac{ad-bc}{bd}< 0\Leftrightarrow ad-bc< 0\)
\(\Rightarrow ad< bc\left(đpcm\right)\)
Ta có : \(\frac{a}{b}< \frac{c}{d}\)
Mà \(\frac{ad}{bd}< \frac{bc}{bd}\)Khử mẫu : \(ad< bc\)
\(\Rightarrow ad-bc< 0\)Ta có đpcm
Cho 2 số hữu tỉ a/b và c/d ( b>0,c>0 ) chứng tỏ rằng a/b <c/d khi và chỉ khi a .d < c.b
Cho hai số hữu tỉ a/b và c/d ( b>0,d>0 ). Chứng tỏ rằng :
a, Nếu a/b < c/d thì ad<cd
b, Nếu ad<bc thì a/b<c/d
Cho hai số hữu tỉ a/b và c/d ( a,b,c,d thuộc Z , b > 0, d >0 )
Chứng tỏ rằng :
a. Nếu a/b < c/d thì ad < bc
b. Nếu ad < bc thì a/ < c/d
Giúp mình với nha !!~~~
Thanks <3
Bài làm
- Xét a(b+2001)=ab+2001a
b(a+2001)=ab+2001b
- Ta xét 3 trường hợp sau:
+Nếu a>b =>2001a>2001b
=>a(b+2001)>b+(a+2001)
=>a/b > a+2001/b+2001
+Nếu a<b =>2001a<2001b
=>a(b+2001)<b+(a+2001)
=>a/b < a+2001/b+2001
+Nếu a=b =>a/b = a+2001/b+2001
a, Ta có: \(\hept{\begin{cases}\frac{a}{b}=\frac{ad}{bd}\\\frac{c}{d}=\frac{bc}{bd}\end{cases}}\)
Mà \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\Rightarrow ad< bc\)
b, Ta có: \(ad< bc\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\Rightarrow\frac{a}{b}< \frac{c}{d}\)
cho 2 số hữu tỉ a/b và c/d (a , b , c , d thuộc Z ; b > 0 , d > 0) . chứng minh a/b < c/d khi và chỉ khi d/c < b/a
Bài làm:
Ta có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\Leftrightarrow\frac{ad}{ac}< \frac{bc}{ac}\Leftrightarrow\frac{d}{c}< \frac{b}{a}\)
Học tốt!!!!
1) cho 2 số hữu tỉ a/b và c/d (b>0, d>0). chứng tỏ rằng:
nếu a/b <c/d thì ad<bc
nếu ad<bc thì a/b <c/d
2) a: chứng tỏ rằng nếu a/b <c/d(b>0,d>0) thì a/b < a+c/b+d
b: hãy viết 3 số hữu tỉ xen giữa -1/3 và -1/4
3) cho a,b thuộc z, b>0.so sánh 2 sô hữu tỉ a/b và a+2001/b+2001
4) so sánh các số hữu tỉ sau bằng cách nhanh nhất:
-18/31 và -181818/313131
-13/38 và 29/-88
18/31 giữ nguyên . 181818/313131=18 nhân 10101/31 nhân 10101 = 18/31
18/31=181818/313131
Cho hai số hữu tỉ \(\frac{a}{b}\) và \(\frac{c}{d}\) (a,b,c, d∈ Z, b>0, d > 0). Chứng minh ad < bc khi và chỉ khi \(\frac{a}{b}\) <\(\frac{c}{d}\)
\(\frac{a}{b}\) < \(\frac{c}{d}\) (a; b; c; d ∈ Z; b >0; d > 0)
\(\frac{c}{d}>\frac{a}{b}\)
⇔\(\frac{c}{d}\) - \(\frac{a}{b}\) > 0
⇔\(\frac{cb-ad}{bd}\) > 0
Vì b; d> 0; \(\frac{cb-ad}{bd}\) > 0
nên \(\frac{cb-ad}{bd}\) > 0 ⇔ cb - ad > 0
⇔ cb > ad (đpcm)
Ta cần chứng minh rằng:
\(\frac{a}{b} < \frac{c}{d} \text{l} \overset{ˋ}{\text{a}} \&\text{nbsp};đ \overset{ˊ}{\text{u}} \text{ng}\&\text{nbsp};\text{khi}\&\text{nbsp};\text{v} \overset{ˋ}{\text{a}} \&\text{nbsp};\text{ch}ỉ\&\text{nbsp};\text{khi} a d < b c\)với các điều kiện: \(a , b , c , d \in \mathbb{Z}\), \(b > 0\), \(d > 0\).
1. Chứng minh chiều thuận:Giả sử \(\frac{a}{b} < \frac{c}{d}\).
Ta sẽ bắt đầu từ bất đẳng thức \(\frac{a}{b} < \frac{c}{d}\) và nhân chéo để đưa ra kết luận:\(\frac{a}{b} < \frac{c}{d} \Rightarrow a \cdot d < c \cdot b\)Do \(b > 0\) và \(d > 0\) (theo giả thiết), việc nhân hai vế của bất đẳng thức với \(b\) và \(d\) không thay đổi chiều bất đẳng thức.
Vậy ta có:
\(a d < b c\)Vậy, khi \(\frac{a}{b} < \frac{c}{d}\), thì \(a d < b c\).
2. Chứng minh chiều ngược lại:Giả sử \(a d < b c\).
Ta cần chứng minh rằng \(\frac{a}{b} < \frac{c}{d}\).Bất đẳng thức \(a d < b c\) có thể viết lại dưới dạng:\(\frac{a}{b} < \frac{c}{d}\)Do \(b > 0\) và \(d > 0\), ta có thể chia cả hai vế của bất đẳng thức \(a d < b c\) cho \(b d\) mà không thay đổi chiều bất đẳng thức.
Vậy ta có:
\(\frac{a}{b} < \frac{c}{d}\)Kết luận:Ta đã chứng minh rằng:
\(\frac{a}{b} < \frac{c}{d} \text{l} \overset{ˋ}{\text{a}} \&\text{nbsp};đ \overset{ˊ}{\text{u}} \text{ng}\&\text{nbsp};\text{khi}\&\text{nbsp};\text{v} \overset{ˋ}{\text{a}} \&\text{nbsp};\text{ch}ỉ\&\text{nbsp};\text{khi} a d < b c\)