Cho S= 22n+1+23n-1+1 với n là số nguyên dương. CMR: S chia hết cho 7
cho S= 25n+1+23n+1+1 với n là số nguyên dương
CMR S chia hết cho 7
Với n=1
S=2^3+2^2+1=13 không chia hết cho 7
Bạn kiểm tra lại đề xem
Cho S là tập hợp các số nguyên dương n, \(n=x^2+3y^2\)với x, y là các số nguyên. CMR:
1) Nếu a,b thuộc S thì ab thuộc S
2) Nếu n thuộc S; n chia hết cho 2 thì n chia hết cho 4 và n/4 thuộc S
Gọi S(n) là tổng của các chữ số của số nguyên dương n. Hãy tìm số nguyên dương n nhỏ nhất sao cho: S(n) và S(n+1) đều chia hết cho 7
dễ thấy để S(n) và S(n+1) đều chia hết cho 1 số thì đuôi của n kết thúc bằng các số 9.
giả sử n có x số 9 cuối(ta tìm x nhỏ nhất)
khi đó n có dạng a 99...9 (x số 9)
=> n+1=b00...0 ( x+1 số 0) với b=a+1
do S(n) ≡ S(n+1) (mod 7) => a+9x ≡ b (mod 7) => 9x ≡ 1 (mod 7)
=> x=4
=> n=a9999
mà S(n) chia hết cho 7 => a=6 => n=69999 là nhỏ nhất thỏa mãn :D
Bài 1 :CMR: số có dạng 9n+1 không chia hết cho 4 với mọi số nguyên n
Bài 2:CMR : tích 2 số chẵn chi hết cho 8
Bài 3: CMR: n3-3n2-n+3 chia hết cho 48 với n lẻ
Bài 4: CMR: n5-5n3+4n chia hết cho 120 với mọi n c Z
Bài 2 gọi hai số chẵn đó là 2a và 2a+2
ta có 2a(2a+2)=4a^2+4a=4a(a+1)
vì a và a+1 là hai số liên tiếp nên trong hai số này sẽ có ,ột số chia hết cho 2
Suy ra 4a(a+1)chia hết cho 8
Bài 3 n^3-3n^2-n+3=n^2(n-3)-(n-3)
=(n-3)(n^2-1)
=(n-3)(n-1)(n+1)
Do n lẻ nên ta thay n=2k+1ta được (2k-2)2k(2k+2)=2(k-1)2k2(k+1)
=8(k-1)k(k+1)
vì k-1,k,k+1laf ba số nguyên liên tiếp mà tích của ba số nguyên liên tiếp chia hết cho 6
8.6=48 Vậy n^3-3n^2-n+3 chia hết cho 8 với n lẻ
Bài 4 n^5-5n^3+4n=n(n^4-5n^2+4)=n(n^1-1)(n^2-4)
=n(n+1)(n-1)(n-2)(n+2)là tích của 5 số nguyên liên tiếp
Trong 5 số nguyên liên tiếp có ít nhất hai số là bội của 2 trong đó có một số là bội của 4
một bội của 3 một bội của 5 do đó tích của 5 số nguyên liên tiếp chia hết cho 2.3.4.5=120
CMr nếu n là số nguyên dương sao cho n!+1 chia hết cho n+1 thì n+1 là số nguyên tố
Tính tổng S = 1+2+3+...+n
Với n là số nguyên dương.
Từ đó duy ra rằng n(n+1) chia hết cho 2 với mọi n thuộc N
S = 1 + 2 + 3 + ... + n
S = n(n + 1) : 2
2S = n(n + 1)
2S ⋮ 2
=> n(n + 1) ⋮ 2
1)2/5+x:5/7=1/3
CMR: 2)B=1/2^2+1/3^2+1/4^2+1/5^2+1/6^2+1/7^2+1/8^2<1
3)CMR: S=3^2+3^3+...+3^101 chia hết cho 120
4)Cho S=5+5^2+5^3+...+5^2006
a) tính S
b)CMR S chia hết cho 6, và S chia hết cho 30
5) tìm số tự nhiên n sao cho 4n-5 chia hết cho 2n-1
chứng minh rằng với mọi số nguyên dương thì S=(n+1)(n+2)(n+3)..........(n+n) chia hết cho 2^n
CMR: Với mọi n nguyên dương thì:
A= \(10^n+18n-1\) chia hết cho 27
P/s: Các bạn giúp mk nhé! Tks
Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9)
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1).
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1).
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)
Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9)
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1).
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1).
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)