ban hoc lop may vay
Cho phân số B = \(\frac{4n+1}{2n-3}\), n thuộc Z
a, Tìm n để B là p/s tối giản
b, Tìm n để B đạt giá trị nhỏ nhất, giá trị lớn nhất và tính các giá trị đó
a, \(\frac{4n+1}{2n-3}=\frac{2n-3+2n+4}{2x-3}\)
= \(\frac{2n-3}{2n-3}+\frac{2n+4}{2n-3}\) = \(1+\frac{2n-3+7}{2n-3}=1+\frac{7}{2n-3}\)
để B tối giản thì 7 phải chia hết cho 2n - 3
=> 2n - 3 thuộc Ư(7)
=> 2n - 3 = { 1 , -1 , 7 , -7 }
=> 2n = { 4 , 2 , 10 , -4 }
=> n ={ 2 , 1 ,5 ,-2 }
Đừng bỏ cuộc
b, để \(\frac{4n+1}{2n-3}\) lớn nhất
=> 2n - 3 phải nhỏ nhất
mà 2n - 3 phải >0 và khác 0 ( là mẫu số )
=> 2n -3 = 1
=> 2n = 4
n = 2
(ᴾᴿᴼシPickaミ★ácミ ★Quỷ★彡)
Ừ câu a)
Để B tối giản thì 7 phải không chia hết cho 2n - 3
=> n khác {2; -2; 5; 1}
Bài 3: Cho phân số B= 4n +1/ 2n-3 , n thuộc Z
a) Tìm n để B là phân số tối giản.
b) Tìm n để B đạt giá trị nhỏ nhất, giá trị lớn nhất và tính các giá trị đó.
Mọi người giúp e với ạ rm đng cần gấp ạ
A= 3n-1/n-2
1.Tìm n thuộc Z để A thuộc Z
2.Tìm n thuộc Z để A đạt giá trị nhỏ nhất
3. Tìm n thuộc Z để A đạt giá trị lớn nhất
a, A = \(\frac{3n-1}{n-2}=\frac{3n-6+5}{n-2}=\frac{3\left(n-2\right)+5}{n-2}=3+\frac{5}{n-2}\)
Để A thuộc Z <=> n - 2 thuộc Ư(5) = {1;-1;5;-5}
Ta có: n - 2 = 1 => n = 3
n - 2 = -1 => n = 1
n - 2 = 5 => n = 7
n - 2 = -5 => n = -3
Vậy n = {3;1;7;-3}
b, A = \(\frac{3n-1}{n-2}=\frac{3n-6+5}{n-2}=\frac{3\left(n-2\right)+5}{n-2}=3+\frac{5}{n-2}\)
Để A đạt giá trị nhỏ nhất <=> \(\frac{5}{n-2}\) đạt giá trị nhỏ nhất
=> n - 2 đạt giá trị lớn nhất (n - 2 \(\ne\)0 ; n - 2 < 0)
=> n - 2 = -1 => n = 1
Vậy để A có giá trị nhỏ nhất thì n = 1
c, \(\frac{3n-1}{n-2}=\frac{3n-6+5}{n-2}=\frac{3\left(n-2\right)+5}{n-2}=3+\frac{5}{n-2}\)
Để A đạt giá trị lớn nhất <=> \(\frac{5}{n-2}\)đạt giá trị lớn nhất
=> n - 2 đạt giá trị nhỏ nhất (n - 2 \(\ne\)0 ; n - 2 > 0)
=> n - 2 = 1 => n = 3
Vậy để A đạt giá trị lớn nhất thì n = 3
\(A=\frac{6n-4}{2n+3}=\frac{6n+9-13}{2n+3}=3-\frac{13}{2n+3}\)
a. Để A đạt giá trị nguyên thì \(\frac{13}{2n-3}\)đạt giá trị nguyên
=> 2n - 3\(\in\){ - 13 ; - 1 ; 1 ; 13 }
=> n\(\in\){ - 5 ; 1 ; 2 ; 8 }
b. thêm điều kiện n\(\in\)Z
Để A đạt GTLN thì \(\frac{13}{2n-3}\)đạt GTNN <=> 2n - 3 đạt GTLN ( không thể tìm được n )
Ta có :
A=6n−4/2n+3=6n+9−13/2n+3=3−13/2n+3
a. Để A nguyên thì 13/2n+3∈Z
⇒2n+3∈{−13;−1;1;13}
⇒2n∈{−16;−4;−2;10}
⇒n∈{−8;−2;−1;5}
b. Bổ sung điều kiện : A thuộc Z
Để A max thì 13/2n+3 min
⇔2n+3 max ∈ Z
Mà A∈Z⇔2n+3=−13 hoặc 2n+3=−1
⇒A max=3−13/−1=16⇔n=−2(tm:n∈Z)
Vậy A max = 16 <=> n = -2
max là giá trị lớn nhất
min là giá trị nhỏ nhất
HT
ta có
\(A=\frac{6n-4}{2n+3}=\frac{6n+9-13}{2n+3}=3-\frac{13}{2n+3}\)
Để A nguyên thì 2n+3 phải là ước của 13 nên
\(\orbr{\begin{cases}2n+3=\pm1\\2n+3=\pm13\end{cases}}\Rightarrow n\in\left\{-8,-2,-1,5\right\}\)
Để A lớn nhất thì \(\frac{13}{2n+3}\text{ nhỏ nhất}\Rightarrow2n+3=-1\Leftrightarrow n=-2\)
ta có
\(A=\frac{6n-4}{2n+3}=\frac{6n+9-13}{2n+3}=3-\frac{13}{2n+3}\)
Để A nguyên thì 2n+3 phải là ước của 13 nên
\(\orbr{\begin{cases}2n+3=\pm1\\2n+3=\pm13\end{cases}}\Rightarrow n\in\left\{-8,-2,-1,5\right\}\)
Để A lớn nhất thì \(\frac{13}{2n+3}\text{ nhỏ nhất}\Rightarrow2n+3=-1\Leftrightarrow n=-2\)
Cho B = 6n-5 / 3n+1
a) Tìm các số nguyên n để có các giá trị nguyên
b) Tìm n thuộc Z để B đạt giá trị nhỏ nhất
cho phân số A=6n-1/3n+2
a/ tìm n thuộc z để a nguyên
b/ tìm n thuộc z để a đạt giá trị nhỏ nhất
Ta có:A=6n-1/3n+2= (6n+4)-5/3n+2=2+5/3n+2
=> Đẻ Acó gtri nguyên thì 5 phải chia hết cho 3n+2
=> 3n+2 thuộc U(5)=(1,5,-5,-1)
ta có bảng sau:( bạn tự kẻ nhé : theo hàng ngang 1 cột là "3n+2" cột dưới là "n"
Vì n thuộc Z nên n= -1
thật ra ko cần kẻ bảng cũng được. tự nhẩm thôi