Chứng minh
a, ab + ba chia hết cho 11
b, ab - ba chia hết cho 9 ( a ≥ b )
c, aaa chia hết cho 37
a, chứng tỏ ab(a+ b) chia hết cho 2
b, chứng tỏ ab+ ba chia hết cho 11
c , chứng tỏ aaa chia hết cho 37
d , chứng tot aaabbb chia hết cho 37
e, ab- ba chia hết cho 9 với a> b
Chứng minh rằng :
a) ab . (a + b) chia hết cho 2
b) ab + ba chia hết cho 11
c) aaa luôn chia hết cho 37
d) aaabbb luôn chia hết cho 37
e) ab - ba chia hết cho 9
aaabbb = aaa000 + bbb
= a.111.1000 + b.111
= a.3.37.1000 + b.3.37
= 37.(a.3.1000 + b.3) ⋮ 37
a)
- nếu a và b cùng là số chẵn thì ab(a+b)chia hết cho 2
- nếu a chẵn,b lẻ(hoặc a lẻ,b chẵn)thì ab (a+b) chia hết cho 2
-nếu a và b cùng lẻ thì (a+b) chẵn nên (a+b)chia hết cho 2,vậy ab(a+b) chia hết cho 2
vậy nếu a,b thuộc N thì ab(a+b) chia hết cho 2
b)
Ta có:ab+ba
=10a+b+10b+a
=11a+11b
Ta thấy:11a chia hết cho 11,11b chia hết cho 11
Suy ra:ab + ba chia hết cho 11
Chứng tỏ
a , ab( a+b) chia hết cho 2
b , ab+ ba chia hết cho 11
C, aaa chia hết cho 37
d , aaabbb chia hết cho 37
e , ab-ba chia hết cho 9 với a>b
Chứng minh
a, ab + ba chia hết cho 11
b, ab - ba chia hết cho 9 ( a \(\ge\)b )
c, aaa chia hết cho 37
a, ab + ba = 10a + b + 10b + a = ( 10a +a ) + (10b +b ) = 11a + 11b =11 ( a + b ) , suy ra :
ab + ba chia hết cho 11 , suy ra ĐPCM.
b, ab - ba = 10a + b - 10b - a =( 10a - a ) + (b - 10b ) = 9a + 9(-b) = 9 (a-b), suy ra :
ab - ba chia hết cho 9 , suy ra ĐPCM
c, aaa = 100a + 10a +a = a (100 + 10 +1 ) = 111.a = 37 . 3 .a, suy ra :
aaa chia hết cho 37, suy ra ĐPCM
Chứng minh
a, ab + ba chia hết cho 11
b, ab - ba chia hết cho 9 ( a ≥b )
c, aaa chia hết cho 37
nói cách làm nhé
a , ab +ba = 10a +b + 10b +a = 11( a + b ) vì 11 chia hết cho 11
vậy biểu thức chia hết cho 11
b, ab - ba = 10a + b - 10b +a = 9a - 9b = 9 ( a-b )
vì 9 cjia hết cho 9 vậy biểu thức chia hết cho 9
a) tổng 10615+8 có chia hết cho 2 và 9 không
b)tổng 10^2010+14 có chia hết cho3 và 2 không
c)hiệu 10^2010-4 có chia hết cho 3 không
d)chứng minh rằng aaa luôn chia hết cho 37
e)chứng minh aaabbb luôn chia hết cho 37
f)chứng tỏ rằng ab(a+b)chia hết cho 2(a;b thuộc N)
m)chứng minh ab+ba luôn chia hết cho 11
n)chứng minh ab-ba luôn chia hết cho 9 với a>b
a, 10615 + 8 không chia hết cho 2 vì 8 ⋮ 2 nhưng 10615 không chia hết cho 2
10615 + 8 không chia hết cho 9 vì 1 + 6 + 1 + 5 + 8 = 21 không chia hết cho 9
c, B = 102010 - 4
10 \(\equiv\) 1 (mod 3)
102010 \(\equiv\) 12010 (mod 3)
4 \(\equiv\) 1(mod 3)
⇒ 102010 - 4 \(\equiv\) 12010 - 1 (mod 3)
⇒ 102010 - 4 \(\equiv\) 0 (mod 3)
⇒ 102010 - 4 \(⋮\) 3
b, B = 102010 + 14
Xét tổng các chữ có trong B là : 1 + 0 x 2010 + 4 = 6 ⋮ 3 ⇒ B ⋮ 3
B = 102010 + 14 = \(\overline{..0}\) + 4 = \(\overline{..4}\) ⋮ 2 vậy B ⋮ 2
Chứng minh rằng
a) ab + ba chia hết cho 11
b) ab - ba chia hết cho 9 với a > b
a) \(\overline{ab}+\overline{ba}=10a+b+10b+a=11a+11b=11.\left(a+b\right)\)
Vì 11⋮11 nên \(\overline{ab}+\overline{ba}\)⋮11
b) \(\overline{ab}-\overline{ba}=10a+b-\left(10b+a\right)=10a+b-10b-a=9a-9b=9.\left(a-b\right)\)
Vì 9⋮9 nên với \(a>b\) thì \(\overline{ab}-\overline{ba}⋮9\)
a)ab+ba
=a.10+b.1+b.10+a.1
=a.10+a.1+b.10+b.1
=a.(10+1)+b.(10.1)
=a.11+b.11
=11.(a+b)⋮11(vì 11⋮11)
b)ab - ba
= 10a + b - (10b + a)
= 10a + b - 10b - a
= 9a - 9b = 9(a - b)
Vậy ta suy ra 9(a - b) chia hết cho 9 hay ab - ba chia hết cho 9 (a > b)
chứng tỏ rằng:
A) Số aaa chia hết cho 37(a khác 0)
B) ab - ba chia hết cho 9
C) nếu ab+ cd chia hết cho11 thì abcd chia hết cho 11
A) 37.3=111, aaa=a.111 nên aaa chia hết cho 37
B)ab= 10a +b, ba=10b+a nên ab-ba =9a-9b=9(a-b) chia hết cho 9
A) 37.3=111, aaa=a.111 nên aaa chia hết cho 37
a,Chứng tỏ rằng ab(a+b) chia hết cho 2 (a;b thuộc N)
b,Chứng minh rằng ab + ba chia hết cho 11
c,Chưnhs minh aaa luôn chia hết cho 37
d, Chứng minh aaabbb luôn chia hết cho 7
b) ab+ba
Ta có:ab=10a+b
ba=10b+a
ab+ba=10a+b+10b+a
= 11a + 11b
Ta thấy: 11a⋮11 ; 11b⋮11
=>ab+ba⋮11 (ĐPCM)