Tìm phân số tối giản \(\frac{a}{b}\) Biết rằng \(\frac{a+b}{b}\) gấp 7 lần phân số \(\frac{a}{b}\)
tìm phân số tối giản a/b biết rằng phân số a+b/b gấp 7 lần a/b
1) Với a là số nguyên nào thì phân số \(\frac{a}{74}\) là phân số tối giản?
2) Tìm phân số \(\frac{a}{b}\) bằng phân số \(\frac{60}{108}\) biết ƯCLN(a,b)=15
3) Chứng minh rằng phân số sau là phân số tối giản: \(\frac{3n+4}{4n+5}\)
Làm nhanh nhé mình đang cần gấp
1) với a là số nguyên thì phân số a/74 khi n ko thuộc bội hay ước của 74
2) 60/108 rút gọn đi thì được phân số 15/27 ,sau đó ta nhân cả tử và mẫu với 5 được a/b = 75/135
vậy a/b = 75/135
còn câu 3 thì mình bó tay chấm com
Cho phân số tối giản \(\frac{a}{b}\). Biết rằng cộng mẫu vào tử, cộng mẫu vào mẫu của phân số thì giá trị tăng lên 2 lần. tìm phân số \(\frac{a}{b}\)
gọi phân số tối giản đó là a/b
theo bài ra ta có :
2.a/b=a+b/b+b=> 2a/b=a+b/b=>2a/4b=a+b/2b=> 4a=a+b=> 3a=b
thay vào phân số cần tìm ta có dạng
a/b=a/3b=1/3( vì 3a=b)
vậy phân số càn tìm là 1/3
nhớ bấm nhé
a) cho phân số tối giản \(\frac{a}{b}\) (a<b) và b khác 0. Chứng tỏ rằng phân số \(\frac{b-a}{b}\) cũng tối giản
b) lấy phân số \(\frac{a}{b}\) tối giản thì phân số \(\frac{a}{a+b}\) có tối giản không
tìm phân số tối giản\(\frac{a}{b}\) sao cho phân số \(\frac{a}{a-b}\) bằng 8 lần phân số \(\frac{a}{b}\)
Theo đầu bài ta có:
\(\frac{a}{a-b}=8\cdot\frac{a}{b}\)
\(\Rightarrow\frac{a-b}{a}=\frac{b}{8\cdot a}\)
\(\Rightarrow1-\frac{b}{a}=\frac{b}{a}\cdot\frac{1}{8}\)
\(\Rightarrow1=\frac{b}{a}\cdot\frac{1}{8}+\frac{b}{a}\)
\(\Rightarrow\frac{b}{a}\cdot\frac{9}{8}=1\)
\(\Rightarrow1:\frac{a}{b}=1:\frac{9}{8}\)
\(\Rightarrow\frac{a}{b}=\frac{9}{8}\)
Thử lại: \(\frac{9}{8}\cdot8=9=\frac{9}{9-8}\) ( đúng với đề bài )
Vậy phân số a/b cần tìm là 9/8
Cho phân số \(\frac{a}{b}\) là phân số tối giản . Chứng tỏ rằng phân số \(\frac{a}{a+b}\) cũng là phân số tối giản
Gọi d = ƯCLN(a, a+b) (d thuộc N*)
=> a chia hết cho d; a + b chia hết cho d
=> a chia hết cho d; b chia hết cho d
Mà phân số a/b tối giản => d = 1
=> ƯCLN(a, a+b) = 1
=> phân số a/a+b tối giản
Gọi d = ƯCLN(a, a+b) (d thuộc N*)
=> a chia hết cho d; a + b chia hết cho d
=> a chia hết cho d; b chia hết cho d
Mà phân số a/b tối giản => d = 1
=> ƯCLN(a, a+b) = 1
=> phân số a/a+b tối giản
Chứng tỏ rằng nếu phân số \(\frac{a}{b}\)là phân số tối giản thì phân số \(\frac{a+b}{b}\)cũng là phân số tối giản.
Giả sử \(\frac{a+b}{b}\) không là phân số tối giản
Gọi ƯCLN của a+b;a là d ( d khác 1 )
Khi đó:\(a+b⋮d;b⋮d\)
\(\Rightarrow\left(a+b\right)-b⋮d\)
\(\Rightarrow a⋮d\) mà b chia hết cho d suy ra \(\frac{a}{b}\) không tối giản ( vô lý )
Vậy ta có đpcm
Cho phân số \(\frac{a}{b}\)tối giản. Chứng minh rằng phân số\(\frac{2a+b}{a\left(a+b\right)}\)tối giản
Gọi D là UCLN (a, b). Ta kí hiệu là (a, b). Áp dụng tính chất: P/s tối giản là p/s có UCLN = 1.
Ta có:
(a, b) = D = 1
\(\Rightarrow\frac{a}{b}=1\)
\(\Rightarrow\frac{2a+b}{a\left(a+b\right)}=\frac{2a+b}{a}+\frac{2a+b}{a+b}\). Mà (a, b) = 1
\(\Rightarrow\frac{2a+b}{a}+\frac{2a+b}{a+b}=\frac{2a+b}{D}+\frac{2a+b}{D+b}=\frac{2a+b}{1}+\frac{2a+b}{1+b}=\frac{2a+b}{1\left(1+b\right)}=1^{\left(đpcm\right)}\)
Bạn bổ sung thêm: \(\frac{2a+b}{1\left(1+b\right)}=\frac{2a+b}{1+b}=\frac{2a}{1}=\frac{2:a}{1:a}=1^{\left(đpcm\right)}\)bổ sung thế này cho nó chắc nhé
Chứng minh rằng nếu phân số \(\frac{a}{b}\)là tối giản thì phân số \(\frac{a+b}{b}\)cũng tối giản.
Gọi d là ƯCLN (a,a+b) và d thuộc N*
=> a+b chia hết cho d ; b chia hết cho d
=> a chia hết cho d ; b chia hết cho d
Mà phân số a/b tối giản =>d = 1
=> ƯCLN(a,a+b)=1
=> Phân số a/a+b tối giản
Ta có
\(\dfrac{a+b}{b}=1+\dfrac{a}{b}=1\dfrac{a}{b}\)
Vì \(\dfrac{a}{b}\)là phân số tối giản nên \(1\dfrac{a}{b}\)là phân số tối giản
Vậy\(\dfrac{a+b}{b}\)là phân số tối giản