Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hox Ngu
Xem chi tiết
huyquanghxh
Xem chi tiết
gửi gió lời yêu em
Xem chi tiết
Uyên Phương
Xem chi tiết
O_O
Xem chi tiết
Samson Lee
Xem chi tiết
Kalluto Zoldyck
20 tháng 4 2016 lúc 19:48

B = 20092009 + 1 / 20092010+1 < 20092009+1+2008 / 20092010+1+2008

                                                    = 20092009+2009 / 20092010+2009

                                                    = 2009(20092008+1) / 2009(20092009+1)

                                                     = 20092008+1 / 20092009+1 = A

=> A > B nhé!

Ai k mk mk k lại !!

Samson Lee
20 tháng 4 2016 lúc 19:53

Vậy bạn phả xét bổ đề \(\frac{a}{b}<\frac{a+n}{b+n}\)

Nguyễn Tuấn Anh
Xem chi tiết
Lưu Hải Dương
Xem chi tiết
TFBoys_Thúy Vân
8 tháng 5 2016 lúc 14:32

Ta có: \(B=\frac{2009^{2009}+1}{2009^{2010}+1}<\frac{2009^{2009}+1+2008}{2009^{2010}+1+2008}\)

               \(=\frac{2009^{2009}+2009}{2009^{2010}+2009}\)

                \(=\frac{2009.\left(2009^{2008}+1\right)}{2009.\left(2009^{2009}+1\right)}\)

                \(=\frac{2009^{2008}+1}{2009^{2009}+1}=A\)

                 => B<A

Ai k mik mik k lại. Chúc các bạn thi tốt

nguyễn thanh tùng
8 tháng 5 2016 lúc 14:33

Ta có: $B=\frac{2009^{2009}+1}{2009^{2010}+1}<\frac{2009^{2009}+1+2008}{2009^{2010}+1+2008}$B=20092009+120092010+1 <20092009+1+200820092010+1+2008 

               $=\frac{2009^{2009}+2009}{2009^{2010}+2009}$=20092009+200920092‍010+2009 

                $=\frac{2009.\left(2009^{2008}+1\right)}{2009.\left(2009^{2009}+1\right)}$=2009.(20092008+1)2009.(20092009+1) 

                $=\frac{2009^{2008}+1}{2009^{2009}+1}=A$=20092008+120092009+1 =A

                 => B<A

Ai k mik mik k lại. Chúc các bạn thi tốt

Việt Trần
Xem chi tiết
Đinh Đức Hùng
20 tháng 7 2017 lúc 14:35

Ta có : \(\frac{2008}{\sqrt{2009}}+\frac{2009}{\sqrt{2008}}=\frac{2009-1}{\sqrt{2009}}+\frac{2008+1}{\sqrt{2008}}=\sqrt{2009}+\sqrt{2008}+\left(\frac{1}{\sqrt{2008}}-\frac{1}{\sqrt{2009}}\right)\)

Vì \(\frac{1}{\sqrt{2008}}>\frac{1}{\sqrt{2009}}\) nên \(\frac{1}{\sqrt{2008}}-\frac{1}{\sqrt{2009}}>0\)

\(\Rightarrow\sqrt{2009}+\sqrt{2008}+\left(\frac{1}{\sqrt{2008}}-\frac{1}{\sqrt{2009}}\right)>\sqrt{2009}+\sqrt{2008}\)

Hay \(\frac{2008}{\sqrt{2009}}+\frac{2009}{\sqrt{2008}}>\sqrt{2008}+\sqrt{2009}\)

Việt Trần
21 tháng 7 2017 lúc 10:10

Cảm ơn bạn CTV