Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Lam Giang
Xem chi tiết
Phạm Lê Thiên Triệu
8 tháng 11 2018 lúc 10:22

gọi UCLN(2n+5;3n+7)=d

ta có:2n+5 chia hết d (1)

3n+7 chia hết d (2)

(1)+(2)=>(3n+7)-(2n+5)=n+2 chia hết d (3)

(3)=>2(n+2)=2n+4 chia hết d (4)

(1)+(4)=>(2n+5)-(2n+4)=1 chia hết d

=>d=1

mà UCLN của 2 số =1 thì 2 số đó là 2 số ng/t/cg/nh

vậy:.................

Nguyễn Lam Giang
8 tháng 11 2018 lúc 17:18

tại sao lại lấy 1,2,3, ..... trừ cho nhau

Phạm Lê Thiên Triệu
8 tháng 11 2018 lúc 17:19

thì để ra 1 số mới,sử dụng số đó để giải bài toán!

Ngọc Huỳnh Như Tuyết
Xem chi tiết
Luffy mũ rơm
19 tháng 7 2016 lúc 13:28

Gọi UCLN (2n+5;3n+7) là d 

Ta có : 2n+5 chia hết cho d => 3(2n+5) chia hết cho d => 6n +15 chia hết cho d 

=> 3n+7 chia hết cho d => 2(3n+7) chia hết cho d => 6n+14 chia hết cho d 

Ta có : (6n+15)-(6n+14)=1 chia hết cho d => d=1

Vậy 2n+5 và 3n+7 là 2 số nguyên tố cùng nhau

Hươngg Pé
15 tháng 12 2016 lúc 19:15

Cho 10 điểm phân biệt trong đó có 3 điem thẳng hàng.Hỏi có bao nhiêu đường thẳng phân biệt được tạo thành đi qua 2 điem trong số các điểm ở trên

(3x+22):8+10=12

5-|3-x|=3

Vũ Khánh Ngân
Xem chi tiết
Hà Quang Huyên
Xem chi tiết
Nguyễn Thùy Dung
14 tháng 11 2021 lúc 11:52

em ko biết là em đúng hay sai chị thông cảm nhéundefined

Khách vãng lai đã xóa
Akina Minamoto
Xem chi tiết
Linh
Xem chi tiết
Nguyễn Thùy Trang
Xem chi tiết
Huỳnh Rạng Đông
26 tháng 1 2017 lúc 9:31

Gọi d là ƯCLN( 2n+3;3n+4)

=> 2n+3 chia hết cho d và 3n+4 chia hết cho d

=> (2n+3) - (3n+4) chia hết cho d

=> 3(2n+3) - 2(3n+4) chia hết cho d

=> (6n+9) - (6n+8) chia hết cho d

=> 1 chia hết cho d

=> d=1

=> ƯCLN(2n+3; 3n+4) = 1

Vậy  2n + 3 và 3n + 4 là 2 số nguyên tố cùng nhau

Nguyễn Thùy Trang
26 tháng 1 2017 lúc 9:24

Các bn trả lời nhanh giùm mình nha.

Trương Thanh Nhân
26 tháng 1 2017 lúc 9:26

quá dễ:

Ta có: gọi ước chung lớn nhất của 2n + 3    và    3n + 4   là d

theo đề, ta lại có:   (2n+3) :   (3n+4) = d

                          3(2n+3) : 2(3n+4) = d

                            (6n+9): (6n + 8)  = d

  Suy ra d = 1

vậy UWCLN của 2n+3 và 3n+4 là 1

Do đó 2n+3 và 3n+ 4 là hai số nguyên tố cùng nhau

Marry Trang
Xem chi tiết
Tran Le Khanh Linh
24 tháng 4 2020 lúc 7:38

a) Gọi d là ƯCLN (n;n+1) (\(d\inℕ^∗\))

\(\Rightarrow\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}\Rightarrow n+1-n⋮d\Rightarrow1⋮d}\)

Mà \(d\inℕ^∗\)=> d=1 => ƯCLN (n;n+1)=1

=> n; n+1 nguyên tố cùng nhau với \(n\inℕ\)(đpcm)

b) Gọi d là ƯCLN (n+1; 3n+4) \(\left(d\inℕ^∗\right)\)

\(\Rightarrow\hept{\begin{cases}n+1⋮d\\3n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(n+1\right)⋮d\\3n+4⋮d\end{cases}\Rightarrow}\hept{\begin{cases}3n+3⋮d\\3n+4⋮d\end{cases}}}\)

=> (3n+4)-(3n+3) chia hết cho d

=> 1 chia hết cho d. Mà d thuộc N*

=> d=1

=> ƯCLN (n+1; 3n+4)=1

=> n+1 và 3n+4 nguyên tố cùng nhau với \(n\inℕ\)

c) Gọi d là ƯCLN (2n+1;3n+2) \(\left(d\inℕ^∗\right)\)

\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}}}\)

=> (6n+4)-(6n+3) chia hết cho d

=> 1 chia hết cho d. Mà d thuộc N*

=> d=1 => ƯCLN (2n+1; 3n+2)=1 

=> 2n+1; 3n+2 nguyên tố cùng nhau với n\(\in\)N

Khách vãng lai đã xóa
thoa nguyen
Xem chi tiết
mai mai la vay
2 tháng 2 2018 lúc 5:56

Đặt a là UCLN(3n+2,2n+1)  => 3n+2 chia hết cho a va 2+1 chia hết cho a.

=> 2(3n+2) vẫn chia hết cho a và 3(2n+1) vẫn chia hết cho a

=>2(3n+2)-3(2n+1) chia hết cho a

=>6n+4-6n-3 chia hết cho a

=> 1 chia hết cho a

=> a=1

vậy 3n+2 và 2n+1 là hai số  nguyên tố cùng nhau.