Cho 4x^2+9y^2=9. Tìm giá trị của biến x, y để A= x-2y+3 đạt GTNN, GTLN
Cho x,,y thỏa mãn 4x2+2y2-4xy+4x+8y+9=0
a Tìm y để x đạt GTNN,GTLN
b Tìm x,y để 2x-y đạt GTNN,GTLN
cho 4x^2+9y^2=9
Tìm GTNN,GTLN của A=x-2y+3
Bài 1 : Cho x - y = 2 > Tính GTNN ( Giá trị nhỏ nhất) của :
a) P = xy + 4
b) Q = x2 + y2 - xy
Bài 2 : Tìm x thuộc Z để :
a) P = 9 - 2| x - 3 | đạt GTLN
b) Q = | x - 2 | + | x - 8 | đạt GTNN
Bài 1: Sử dụng phép thế
Có x - y = 2 => x = 2 + y
Thay x = 2 + y vào các biểu thức cần tính
Bài 2:
\(P=9-2\left|x-3\right|\le9\) dấu bằng <=> x = 3
\(Q=\left|x-2\right|+\left|x-8\right|=\left|x-2\right|+\left|8-x\right|\ge\left|x-2+8-x\right|=6\) dấu bằng <=> \(\left(x-2\right)\left(8-x\right)\ge0\)
1.Cho
B= 2|x|+3 \ 3|x|-1 ( x thuộc Z)
a: tìm x thuộc z để B đạt GTLN
b: tìm x thuộc z để B có giá trị là số tự nhiên
2.Cho x-y=2 ( x,y thuộc Z)
Tìm GTNN
C= |2x+1| + |2y+1|
1.Cho
B= 2|x|+3 \ 3|x|-1 ( x thuộc Z)
a: tìm x thuộc z để B đạt GTLN
b: tìm x thuộc z để B có giá trị là số tự nhiên
2.Cho x-y=2 ( x,y thuộc Z)
Tìm GTNN
C= |2x+1| + |2y+1|
CHO MÌNH HỎI
1) Tìm GTLN của A= giá trị tuyệt đối x+2 - \(\frac{51}{2}\)
2) Tìm GTNN của: 2x2+4x+4+y2-4y
3) Tìm GTNN của biểu thức: x2-4x+13 đạt được x=?
1.Cho
B= 2|x|+3 \ 3|x|-1 ( x thuộc Z)
a: tìm x thuộc z để B đạt GTLN
b: tìm x thuộc z để B có giá trị là số tự nhiên
2.Cho x-y=2 ( x,y thuộc Z)
Tìm GTNN
C= |2x+1| + |2y+1|
giúp mình nha
cho A = xy^2+ y^2(y^2 -x) +1 /x^2.y^4+2y^2+x^2 +2. Tìm giá trị của biến để A đạt giá trị nhỏ nhất
Bài 4:
a, Tìm GTLN
\(Q=-x^2-y^2+4x-4y+2\)
b, Tìm GTLN
\(A=-x^2-6x+5\)
\(B=-4x^2-9y^2-4x+6y+3\)
c, TÌm GTNN
\(P=x^2+y^2-2x+6y+12\)
a) Ta có: \(Q=-x^2-y^2+4x-4y+2=-\left(x^2+y^2-4x+4y-2\right)\)
\(=-\left(x^2-4x+4+y^2+4y+4\right)+10\)
\(=-\left[\left(x-2\right)^2+\left(y+2\right)^2\right]+10\le10\forall x,y\)
Vậy MaxQ=10 khi x=2, y=-2
b) +Ta có: \(A=-x^2-6x+5=-\left(x^2+6x-5\right)=-\left(x^2+6x+9-14\right)\)
\(=-\left(x^2+6x+9\right)+14=-\left(x+3\right)^2+14\le14\forall x\)
Vậy MaxA=14 khi x=-3
+Ta có: \(B=-4x^2-9y^2-4x+6y+3=-\left(4x^2+9y^2+4x-6y-3\right)\)
\(=-\left(4x^2+4x+1+9y^2-6y+1-5\right)\)
\(=-\left[\left(2x+1\right)^2+\left(3y-1\right)^2\right]+5\le5\forall x,y\)
Vậy MaxB=5 khi x=-1/2, y=1/3
c) Ta có: \(P=x^2+y^2-2x+6y+12=x^2-2x+1+y^2+6y+9+2\)
\(=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\forall x,y\)
Vậy MinP=2 khi x=1, y=-3