cho hình chữ nhật ABCD từ A vẽ đường thẳng vuông góc với đường chéo BD tại H và cắt DC tại E. Gọi M,N lần lượt là hình chiếu xuống của AD và AB
C/m AM.AD=AN.AB
Cho hình chữ nhật ABCD có M là trung điểm DC. Từ M vẽ đường thẳng vuông góc với DC cắt AB tại N. Gọi E, F lần lượt là trung điểm của AD,BC. Vẽ CH vuông góc bd tại H. I đối xứng với A qua H và J đối xứng với A qua DC. Chứng minh I,J,C thẳng hàng
Cho hình chữ nhật ABCD có M là trung điểm của DC. Từ M vẽ đường thẳng vuông góc với DC cắt AB tại N. Gọi E, F lần lượt là trung điểm của AD, BC. Vẽ CH vuông góc với BD tại H. J đối xứng với A qua H và I đối xứng với A qua DC. Chứng minh I, J, C thẳng hàng
Cho hình chữ nhật ABCD , hai đường chéo cắt nhau tại H , qua C kẻ đường thẳng vuông góc với AC cắt AB , AD lần lượt tại M và N . Gọi K là trung điểm của MN , AK cắt BD ,DC lần lượt tại Q và E . Biết AK vuông góc DB
a, chứng minh : \(DQ=2AH.\sqrt{\frac{QE}{MN}}\)
Cho hình thang ABCD có AB//CD (AB<CD), M là trung điểm AD. Qua M vẽ đường thẳng // với 2 đáy của hình thang cắt 2 đường chéo BD và AC lần lượt tại E,F.
a) Chứng minh N, E, F lần lượt là trung điểm của BC, BD, AC
b) Gọi I là trưng điểm AB, đường thẳng vuông góc với IE cắt với nhau tại E và đường thẳng vuông góc với IF tại F cắt nhau tại K. Chứng minh KC=KD
Cho hình chữ nhật ABCD (AD<AB). Gọi O là giao của AC và BD. Qua O vẽ đường thẳng vuông góc với BD cắt AB,DC,BC tại M,N,T. Qua M vẽ dường thẳng song song với AC cắt DA,BD tại E,I, vẽ hình chữ nhật AEFM. CMR:
a;CMR AF//DB
b;CMR F và C đối xứng qua I
c;Gọi H,G là trung điểm của AB;DC. CMR TG vuông góc với MH
Cho hình chữ nhật ABCD có hai đường chéo AC và BD cắt nhau tại O. Lấy điểm M thuộc đoạn thẳng OC. Gọi E, F lần lượt là hình chiếu của điểm M trên đường thẳng AB, AD. Chứng minh:
a) Tứ giác AEMF là hình chữ nhật.
b) BD // EF.
+ vẽ hình nhé
a: Xét tứ giác AEMF có
\(\widehat{AEM}=\widehat{AFM}=\widehat{EAF}=90^0\)
=>AEMF là hình chữ nhật
b:
Ta có: MF\(\perp\)AD
DC\(\perp\)AD
Do đó: MF//DC
Ta có: AEMF là hình chữ nhật
=>\(\widehat{AEF}=\widehat{AMF}\)
mà \(\widehat{AMF}=\widehat{ACD}\)(hai góc đồng vị, MF//CD)
nên \(\widehat{AEF}=\widehat{ACD}\)
Ta có: ABCD là hình chữ nhật
=>AC cắt BD tại trung điểm của mỗi đường và AC=BD
=>O là trung điểm chung của AC và BD và AC=BD
=>OA=OB=OC=OD
Xét ΔACD vuông tại D và ΔCAB vuông tại B có
CA chung
AD=CB
Do đó: ΔACD=ΔCAB
=>\(\widehat{ACD}=\widehat{CAB}\)
mà \(\widehat{CAB}=\widehat{OAB}=\widehat{OBA}\)(ΔOAB cân tại O)
nên \(\widehat{ACD}=\widehat{ABD}\)
=>\(\widehat{AEF}=\widehat{ABD}\)
mà hai góc này là hai góc ở vị trí đồng vị
nên EF//BD
Cho hình chữ nhật ABCD, AD<AB, đường thẳng vuông góc với AC tại C cắt AD, AB lần lượt tại M và N. Gọi E là trung điểm của MC. Kẻ Ch vuông góc với BD tại H, BE cắt CH tại K. Chứng minh K là trung điểm của HC.
Cho hình thang ABCD có AB song song CD ( AB<CD) và M là trung điểm của AD. Qua M vẽ đường thẳng song song với 2 đáy của hình thang cắt cạnh bên BC tại N và cắt 2 đường chéo BD và AC lần lượt tại E,F.
a)Chứng minh rằng N,E,F lần lượt là trung điểm của BC,BD,AC.
b)Gọi I là trung điểm của AB. Đường thẳng vuông góc với IE tại E và đường thẳng vuông góc với IF tại F cắt nhau ở K.Chứng minh KC=KD
cho hình thang ABCD có AB song song CD ( AB< CD) và M là trung điểm của AD. Qua M vẽ đường thẳng song song với 2 đáy của hình thang cắt cạnh bên BC tại N và cắt 2 đường chéo BD và AC lần lượt tại E. F.
a) Chứng mình rằng N, E, F lần lượt là trung điể cạnh BC , BD, AC.
b) Gọi I là trung điểm của AB. Đuo82ng thẳng vuông góc với IE tại E và đường thẳng vuông góc với IF tại F cắt nhau ở K. Chứng minh KC = KD.