Giúp mik với giá trị lớn nhất của biểu thức A=3- |x-2017| -(x-2017)^2
1/ Tìm giá trị nhỏ nhất của biểu thức B= 2I3x-6I - 4
2/ Tìm x thuộc Z để biểu thức D= I x-2 I + I x-8 I đạt Gía trị nhỏ nhất
3/ Tìm GTNN của biểu thức B = I x-2017 I + I x-1 I
A= I x-2017 I + I x-2 I
4/ với giá trị nào của x,y thì biểu thức C = I x-100 I + I y+20 I - 1 có giá trị nhỏ nhất . Tìm GTNN
5/ Với giá trị nào của x thì biểu thức A= 100 - I x+5 I có giá trị lớn nhất. Tính GTLN đó
giúp với ạ ._.
1/ Gọi Bmin là GTNN của B
Ta có \(\left|3x-6\right|\ge0\)=> \(2\left|3x-6\right|\ge0\)với mọi \(x\in R\)
=> \(2\left|3x-6\right|-4\ge0\)với mọi \(x\in R\).
=> Bmin = 0.
Vậy GTNN của B = 0.
2/ Gọi Dmin là GTNN của D.
Ta có \(\left|x-2\right|\ge0\)với mọi \(x\in R\)
và \(\left|x-8\right|\ge0\)với mọi \(x\in R\)
=> \(\left|x-2\right|+\left|x-8\right|\ge0\)với mọi \(x\in R\)
=> Dmin = 0.
=> \(\left|x-2\right|+\left|x-8\right|=0\)
=> \(\hept{\begin{cases}\left|x-2\right|=0\\\left|x-8\right|=0\end{cases}}\)=> \(\hept{\begin{cases}x-2=0\\x-8=0\end{cases}}\)=> \(\hept{\begin{cases}x=2\\x=8\end{cases}}\)(Vô lý! Không thể cùng lúc có 2 giá trị x xảy ra)
Vậy không có x thoả mãn đk khi GTNN của D = 3.
Tìm giá trị lớn nhất của biểu thức A=1 |x+2017|+|x-2|
\(\left|x+2017\right|+\left|x-2\right|=\left|x+2017\right|+\left|2-x\right|>=\left|x+2017+2-x\right|=2019\)
=>A=1/|x+2017|+|x-2|<=1/2019
Dấu = xảy ra khi -2017<=x<=2
Tìm giá trị lớn nhất của biểu thức A=1/ |x+2017|+|x-2|
lx+2017l +lx-2l > 0
Xét :
|x+2017| > 2017 với mọi x . Dấu bằng xảy ra khi và chỉ khi x = 0
|x-2| > 2 với mọi x. Dấu "=" xảy ra khi và chỉ khi x = 0
Vậy giá trị lớn nhất của A \(=\frac{1}{2019}\) khi x = 0
\(A=\frac{1}{\left|x+2017\right|+\left|x-2\right|}\)
TH1 : \(x\ge2\)\(\Rightarrow\left|x+2017\right|=x+2017\)
\(\left|x-2\right|=x-2\)
\(\Rightarrow A=\frac{1}{2x+2015}\)Do \(x\ge2\Rightarrow2x+2015\ge2019\)
\(\Rightarrow A\le\frac{1}{2019}\)Dấu '' = '' xảy ra khi x = 2
TH2 : \(x\le-2017\)\(\Rightarrow\left|x+2017\right|=-x-2017\)
\(\left|x-2\right|=2-x\)
\(\Rightarrow A=\frac{1}{-2x-2015}\)
\(x\le-2017\Rightarrow-2x\ge4034\)
\(\Rightarrow-2x-2015\ge2019\)
\(\Rightarrow A\le\frac{1}{2019}\). Dấu '' = '' xảy ra \(\Leftrightarrow x=-2017\)
TH3 : \(-2017< x< 2\)\(\Rightarrow\left|x+2017\right|=x+2017\)
\(\left|x-2\right|=2-x\)
\(\Rightarrow A=\frac{1}{2019}\)
Vậy GTLN của A là \(\frac{1}{2019}\)
Dấu '' = '' xảy ra \(\Leftrightarrow-2017\le x\le2\)
3/ Tìm GTNN của biểu thức B = I x-2017 I + I x-1 I
A= I x-2017 I + I x-2 I
4/ với giá trị nào của x,y thì biểu thức C = I x-100 I + I y+20 I - 1 có giá trị nhỏ nhất . Tìm GTNN
5/ Với giá trị nào của x thì biểu thức A= 100 - I x+5 I có giá trị lớn nhất. Tính GTLN đó
Tìm GTNN của biểu thức B = I x-2017 I + I x-1 I
có |x-2017|luôn\(\ge0\forall x\in Q\)
cũng có |-1|luôn\(\ge0\forall x\in Q\)
=>I x-2017 I + I x-1 I\(\ge0\forall x\in Q\)
=> I x-2017 I + I x-1 I=|x-2017|+|1-x|=|x-2017+1-x|=2016
dấu''='' xảy ra <=>(x-2017)(1-x)=0
TH1:
=>\(\orbr{\begin{cases}x-2017\ge0\\1-x\le0\end{cases}}\)
TH2:
=> \(\orbr{\begin{cases}x-2017\le0\\1-x\ge0\end{cases}}\)
tự làm típ ! xét 2 TH thấy cái nào mà nó vô lí thì đánh vô lí chọn TH còn lại nhé !
1/ Tìm giá trị nhỏ nhất của biểu thức B= 2I3x-6I - 4
2/ Tìm x thuộc Z để biểu thức D= I x-2 I + I x-8 I đạt Gía trị nhỏ nhất
3/ Tìm GTNN của biểu thức B = I x-2017 I + I x-1 I
A= I x-2017 I + I x-2 I
4/ với giá trị nào của x,y thì biểu thức C = I x-100 I + I y+20 I - 1 có giá trị nhỏ nhất . Tìm GTNN
5/ Với giá trị nào của x thì biểu thức A= 100 - I x+5 I có giá trị lớn nhất. Tìm GTLN đó
Tìm giá trị của a để biểu thức sau có giá trị
lớn nhất:
(2015 x 2016 x 2017 x 2018): (2018 - a)
Tìm giá trị lớn nhất của biểu thức A=\(\frac{1}{\left|x+2017\right|+\left|x-2\right|}\)
Giúp mk với mai thi rồi hihi!
Ta có:\(|x+2017|+|x-2|\)
\(=|x+2017|+|2-x|\ge|x+2017+2-x|\)
\(\Rightarrow\frac{1}{|x+2017|+|2-x|}\le\frac{1}{2015}\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x+2017\right).\left(2-x\right)\ge0\)
Tự làm típ nha gợi í có 2 Th là 2 cái lớn hơn hoặc bằng 0 và TH2 là 2 cái nhỏ hơn 0
\(\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}x+2017\ge0\\2-x\ge0\end{cases}}\\\hept{\begin{cases}x+2017< 0\\2-x< 0\end{cases}}\end{cases}}\)
Để A có GTLN thì mẫu số phải có GTNN
Áp dụng bất đẳng thức: \(|x|+|y|\ge|x+y|\)
Ta có: \(|x+2017|+|x-2|=|x+2017|+|2-x|\ge|x+2017+2-x|=2019\)
Dấu "=" xảy ra \(\Leftrightarrow xy\ge0\)
\(\Leftrightarrow-2017\le x\le2\)
Vậy GTLN của \(A=\frac{1}{2019}\Leftrightarrow-2017\le x\le2\)
Tìm giá trị lớn nhất , nhỏ nhất của biểu thức
A = x+ 2017 / x+ 2
Tìm giá trị lớn nhất của biểu thức: M= 2017 - /x+2/
Có : |x+2| >=0 => M =2017-|x+2| < = 2017-0 = 2017
Dấu "=" xảy ra <=> x+2=0 <=> x=-2
Vậy GTLN của M = 2017 <=> x=-2
k mk nha