cho s=1+2+2mũ2+2mũ3+.....+2mũ9 và p=5.2mũ0
hãy so sánh s và p
cho E = 1+2+2mũ2+2mũ3+...+2mũ9.
Ta có: 2E= 2+2^2+2^3+2^4+...+2^10
2E - E = (2+2^2+2^3+2^4+...+2^10) - (1+2+2^2+2^3+...+2^9)
E = 2^10-1
\(E=1+2+2^2+2^3+...+2^9\)
=>\(2E=2+2^2+2^3+2^4+...+2^{10}\)
=>\(2E-E=\left(2+2^2+2^3+2^4+...+2^{10}\right)-\left(1+2+2^2+2^3+...+2^9\right)\)
=>\(E=2^{10}-1=1024-1=1023\)
Chứng minh rằng : 2+2mũ2+2mũ3+...+2mũ8 +2mũ9 chia hết cho 14
Nhanh lên mọi người ơi
2+22+23+....+28+29
=(2+22+23)+....+(27+28+29)
=(2+22+23)+....+26.(2+22+23)
=14+...+26+14
=14.(1+.....+26) \(⋮\)14
Vậy 2+22+23+...+28+29 \(⋮\)14
Chúc bn học tốt
S=1+2+2mũ2+2mũ3+....+2mũ2022
\(S=1+2+2^2+2^3+...+2^{2022}\)
\(\Rightarrow2S=2+2^2+2^3+2^4+...+2^{2022}+2^{2023}\)
trừ vế với vế ta được :
\(2S-S=2^{2023}-1\)
\(\Rightarrow S=2^{2023}-1\)
Tính tổng
S=1-2+2mũ2-2mũ3+...+2mũ1000
Ý bạn là:
Cho \(S=2+2^2+2^3+...+2^{95}+2^{96}.\)Chứng tỏ \(S⋮24\)
Nếu thế thì mình giải cho
Ý bn là:
Cho \(S=2+2^2+2^3+...+2^{95}+2^{96}.\)Chứng tỏ \(S⋮24\)
Nếu vậy thì mình giải cho
Ta có: \(S=2+2^2+\left(2^3+2^4\right)+...+\left(2^{95}+2^{96}\right)\)
\(\Leftrightarrow S=2+2^2+24+...+2^{92}.24\)
\(\Leftrightarrow S=6+24.\left(1+2^2+...+2^{92}\right)\)
Vì \(24.\left(1+2^2+...+2^{92}\right)⋮24\)mà \(6⋮̸24\)
\(\Rightarrow S⋮̸̸24\)
s=2+2mũ3+...+2mũ21
tính 2mũ2 nhân s
S = 2 + 23 + ... + 221
=> 4S = 23 + 25 + ... + 223
=> 4S - S = 223 - 2
=> S = \(\frac{2^{23}-2}{3}\)
Theo bài ra: 22.S = 4.\(\frac{2^{23}-2}{3}\)=11184808
S=2mũ1+2mũ2+2mũ3+....+2mũ60. Chứng tỏ S chia hết cho 3
S = ( 21 + 22 ) + ( 23 + 24 ) + ..... + ( 259 + 260 )
S = 2 x ( 1 + 2 ) + 23 x ( 1 + 2 ) + .......... + 259 x ( 1 + 2 )
S = 2 x 3 + 23 x 3 + ..... + 259 x 3
S = ( 2 + 23 + ........ + 259 ) x 3
mà 3 \(⋮\)3 => S \(⋮\) 3
Ta có :
S= 2^1+2^2+2^3+...+2^60
S= (2^1+2^2)+(2^3+2^4)+...+(2^59+2^60)
s=2(1+2)+2^3(1+2)+...+2^59(1+1)
S= 3(2+2^3+...+2^59)
=> đpcm
S = 2 + 2^2 + 2^3 + ..... + 2^60
=> 2S = 2^2 + 2^3 + 2^4 + ..... + 2^61
=> 2S - S = 2^61 - 2
=> s = 2^61 - 2
chứng tỏ rằng
a). A = 2+2mũ2+ 2mũ3+ 2mũ4 + ...+ 2mũ9 + 2mũ10 chia hết cho 3
b) A= 2mũ2+ 2mũ4+ 2mũ6+ 2mũ8+ ...+ 2mũ18+ 2mũ20 chia hết cho 5
c) A = 7+ 7mũ2+ 7mũ3+ 7mũ4+ ...+ 7mũ9+ 7mũ10 chia hết cho 8
d) A = 4+ 4mũ2+ 4mũ3+ 4mũ4 + ...+ 4mũ9+ 4mũ10 chia hết cho 5
a) Ta có : A=2+22+23+...+210
=(2+22)+(23+24)+...+(29+210)
=2(1+2)+23(1+2)+...+29(1+2)
=2.3+23.3+...+29.3
Vì 3\(⋮\)3 nên 2.3+23.3+...+29.3\(⋮\)3
hay A\(⋮\)3
Vậy A\(⋮\)3.
b) Ta có : A=22+24+26+...+220
=(22+24)+(26+27)+...+(218+220)
=22(1+22)+26(1+22)+...+218(1+22)
=22.5+26.5+...+218.5
Vì 5\(⋮\)5 nên 22.5+26.5+...+218.5\(⋮\)5
hay A\(⋮\)5
Vậy A\(⋮\)5.
c) Ta có : A=7+72+73+...+710
=(7+72)+(73+74)+...+(79+710)
=7(1+7)+73(1+7)+...+79(1+7)
=7.8+73.8+...+79.8
Mà 8 chia hết cho 8 nên 7.8+73.8+...+79.8 chia hết cho 8
hay A chia hết cho 8
Vậy A chia hết cho 8.
hãy chứng minh (1 +2 +2mũ2+2mũ3+2mũ4+2mũ5+2mũ6+2mũ7) chia hêt cho 3
đặt A=1+2+2^2+2^3+2^4+2^5+2^6+2^7
2A=2+2^2+2^3+2^4+2^5+2^6+2^7+2^8
2A-A=(2+2^2+2^3+2^4+2^5+2^6+2^7+2^8)-(1+2+2^2+1^3+2^4+2^5+2^6+2^7)
A=2^8-1
A=256-1=255
255 chia hết cho 3
nên 1+2+2^2+2^3+2^4+2^5+2^6+2^7 cũng chia hết cho 3