Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Vĩ Vĩ

Những câu hỏi liên quan
Vĩ Vĩ
Xem chi tiết
Vĩ Vĩ
Xem chi tiết
Vĩ Vĩ
Xem chi tiết
Akai Haruma
12 tháng 8 2023 lúc 23:52

Tìm min:

$F=3x^2+x-2=3(x^2+\frac{x}{3})-2$

$=3[x^2+\frac{x}{3}+(\frac{1}{6})^2]-\frac{25}{12}$

$=3(x+\frac{1}{6})^2-\frac{25}{12}\geq \frac{-25}{12}$

Vậy $F_{\min}=\frac{-25}{12}$. Giá trị này đạt tại $x+\frac{1}{6}=0$
$\Leftrightarrow x=\frac{-1}{6}$

Akai Haruma
12 tháng 8 2023 lúc 23:54

Tìm min

$G=4x^2+2x-1=(2x)^2+2.2x.\frac{1}{2}+(\frac{1}{2})^2-\frac{5}{4}$

$=(2x+\frac{1}{2})^2-\frac{5}{4}\geq 0-\frac{5}{4}=\frac{-5}{4}$ (do $(2x+\frac{1}{2})^2\geq 0$ với mọi $x$)

Vậy $G_{\min}=\frac{-5}{4}$. Giá trị này đạt tại $2x+\frac{1}{2}=0$

$\Leftrightarrow x=\frac{-1}{4}$

Akai Haruma
12 tháng 8 2023 lúc 23:55

Tìm min

$H=5x^2-x+1=5(x^2-\frac{x}{5})+1$

$=5[x^2-\frac{x}{5}+(\frac{1}{10})^2]+\frac{19}{20}$

$=5(x-\frac{1}{10})^2+\frac{19}{20}\geq \frac{19}{20}$
Vậy $H_{\min}=\frac{19}{20}$. Giá trị này đạt tại $x-\frac{1}{10}=0$

$\Leftrightarrow x=\frac{1}{10}$

Hà Thu
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 12 2023 lúc 20:32

loading...

Vậy: \(D_{max}=7\) khi x=2 và y=-4

Dương Thị Diệu Linh
Xem chi tiết
Hà Thu
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 12 2023 lúc 20:15

\(B=3x^2+3x-1\)

\(=3\left(x^2+x-\dfrac{1}{3}\right)\)

\(=3\left(x^2+x+\dfrac{1}{4}-\dfrac{7}{12}\right)\)

\(=3\left(x+\dfrac{1}{2}\right)^2-\dfrac{7}{4}>=-\dfrac{7}{4}\forall x\)

Dấu '=' xảy ra khi x+1/2=0

=>\(x=-\dfrac{1}{2}\)

\(C=-2x^2+7x+3\)

\(=-2\left(x^2-\dfrac{7}{2}x-\dfrac{3}{2}\right)\)

\(=-2\left(x^2-2\cdot x\cdot\dfrac{7}{4}+\dfrac{49}{16}-\dfrac{73}{16}\right)\)

\(=-2\left(x-\dfrac{7}{4}\right)^2+\dfrac{73}{8}< =\dfrac{73}{8}\forall x\)

Dấu '=' xảy ra khi x-7/4=0

=>x=7/4

loading...

loading...

loading...

quyentran04
Xem chi tiết
Nguyễn Minh Hằng
Xem chi tiết
Dương Thị Diệu Linh
Xem chi tiết
Kiệt Nguyễn
29 tháng 7 2019 lúc 16:02

\(A=x^2-6x-4=x^2-6x+9-13=\left(x-3\right)^2-13\ge-13\)

Vậy \(A_{min}=-13\Leftrightarrow x=3\)

Kiệt Nguyễn
29 tháng 7 2019 lúc 16:03

\(B=x^2-x+1=x^2-2.\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Vậy \(B_{min}=\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)

Kiệt Nguyễn
29 tháng 7 2019 lúc 17:17

\(C=5x^2+x-3=5\left(x^2+\frac{1}{5}x-\frac{3}{5}\right)\)

\(=5\left(x^2+2.\frac{1}{10}x+\frac{1}{100}-\frac{61}{100}\right)\)

\(=5\left[\left(x+\frac{1}{10}\right)^2-\frac{61}{100}\right]=5\left(x+\frac{1}{10}\right)^2-\frac{61}{20}\ge\frac{-61}{20}\)

Vậy \(C_{min}=\frac{-61}{20}\Leftrightarrow x=\frac{-1}{10}\)