Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hiếu Tạ
Xem chi tiết
๖²⁴ʱƘ-ƔℌŤ༉
16 tháng 8 2019 lúc 10:42

d) \(4x^2-9-x\left(2x-3\right)=0\)

\(\Leftrightarrow4x^2-9-2x^2+3x=0\)

\(\Leftrightarrow2x^2+3x-9=0\)

\(\Delta=3^2-4.2.\left(-9\right)=9+72=81\)

Vậy pt có 2 nghiệm phân biệt

\(x_1=\frac{-3+\sqrt{81}}{4}=\frac{-3}{2}\);\(x_1=\frac{-3-\sqrt{81}}{4}=-3\)

๖²⁴ʱƘ-ƔℌŤ༉
16 tháng 8 2019 lúc 10:50

e) \(x^3+5x^2+9x=-45\)

\(\Leftrightarrow x^3+5x^2+9x+45=0\)

\(\Leftrightarrow x^2\left(x+5\right)+9\left(x+5\right)=0\)

\(\Leftrightarrow\left(x^2+9\right)\left(x+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+9=0\\x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\pm3i\\x=-5\end{cases}}\)

๖²⁴ʱƘ-ƔℌŤ༉
16 tháng 8 2019 lúc 10:55

f) \(x^3-6x^2-x+30=0\)

\(\Leftrightarrow\left(x^3-x^2-6x\right)-\left(5x^2-5x-30\right)=0\)

\(\Leftrightarrow x\left(x^2-x-6\right)-5\left(x^2-x-6\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x^2-x-6\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x^2-2x+3x-6\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left[x\left(x-2\right)+3\left(x-2\right)\right]=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+3\right)\left(x-2\right)=0\)

\(\Leftrightarrow x\in\left\{5;-3;2\right\}\)

Trần Manh
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 12 2021 lúc 21:01

b: 

1: \(\Leftrightarrow2x\left(x+2\right)=0\)

=>x=0 hoặc x=-2

trần thị ngọc nhi
Xem chi tiết
Huy Hoàng
24 tháng 6 2018 lúc 14:19

a/ \(\left(2x+3\right)^2-\left(2x+1\right)\left(2x-1\right)=22\)

<=> \(\left(2x+3\right)^2-\left(4x^2-1\right)=22\)

<=> \(\left(2x+3\right)^2-4x^2+1=22\)

<=> \(\left(2x+3-2x\right)\left(2x+3+2x\right)=21\)

<=> \(3\left(4x+3\right)=21\)

<=> \(4x+3=7\)

<=> \(4x=4\)

<=> \(x=1\)

Bùi Đình Hải
24 tháng 6 2018 lúc 12:38

......................?

mik ko biết

mong bn thông cảm 

nha ................

Lê Hồng Dung
Xem chi tiết
Trần Đình Thiên
24 tháng 7 2023 lúc 14:38

Một. Khai triển vế trái của phương trình:
(x-3)(x+3) = x(x+3) - 3(x+3) = x^2 + 3x - 3x - 9 = x^2 - 9

Khai triển vế phải của phương trình:
(x-5)^2 = (x-5)(x-5) = x(x-5) - 5(x-5) = x^2 - 5x - 5x + 25 = x^2 - 10x + 25

Đặt hai cạnh bằng nhau:
x^2 - 9 = x^2 - 10x + 25

Trừ x^2 từ cả hai phía:
-9 = -10x + 25

Trừ 25 từ cả hai vế:
-34 = -10 lần

Chia cả hai vế cho -10:
x = 3,4

b. Khai triển vế trái của phương trình:
(2x+1)^2 - 4x(x-1) = (2x+1)(2x+1) - 4x^2 + 4x = 4x^2 + 2x + 2x + 1 - 4x^2 + 4x = 8x + 1

Đặt vế trái bằng 17:
8x + 1 = 17

Trừ 1 cho cả hai vế:
8x = 16

Chia cả hai vế cho 8:
x = 2

c. Khai triển vế trái của phương trình:
(3x-2)(3x+2) - 9(x-1)x = (9x^2 - 4) - 9x^2 + 9x - 9x = -4 + 9x

Đặt vế trái bằng 0:
-4 + 9x = 0

Thêm 4 vào cả hai bên:
9x = 4

Chia cả hai vế cho 9:
x = 4/9

d. Khai triển vế trái của phương trình:
(3-x)^3 - (x+3)^3 = (27 - 9x + x^2) - (x^3 + 9x^2 + 27) = 27 - 9x + x^2 - x^3 - 9x^2 - 27 = -x^3 - 8x^2 - 9x

Đặt vế trái bằng 36x^2 - 54x:
-x^3 - 8x^2 - 9x = 36x^2 - 54x

Cộng x^3 + 8x^2 + 9x vào cả hai vế:
0 = 37x^2 - 63x

Chia cả hai vế cho x:
0 = 37x - 63

Thêm 63 vào cả hai bên:
63 = 37 lần

Chia cả hai vế cho 37:
x = 63/37

Lý Vũ Thị
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 6 2023 lúc 21:40

a: =>2x^2-2x+2x-2-2x^2-x-4x-2=0

=>-5x-4=0

=>x=-4/5

b: =>6x^2-9x+2x-3-6x^2-12x=16

=>-19x=19

=>x=-1

c: =>48x^2-12x-20x+5+3x-48x^2-7+112x=81

=>83x=83

=>x=1

Nguyễn Thị Kim Anh
Xem chi tiết
nhung
1 tháng 8 2017 lúc 17:24

ã) x=-3

Nguyễn Ngọc Thùy
Xem chi tiết
Edogawa Conan
25 tháng 6 2019 lúc 10:16

Ta có:

A = 12x - 4x2 + 3 = -4(x2 - 3x + 9/4) + 12 = -4(x - 3/2)2 + 12

Ta luôn có: (x - 3/2)2 \(\ge\)\(\forall\)x => -4(x  - 3/2)2 \(\le\)\(\forall\)x

=> -4(x - 3/2)2 + 12 \(\le\)12 \(\forall\)x

Dấu "=" xảy ra khi : (x - 3/2)2 = 0 <=> x - 3/2 = 0 <=> x = 3/2

Vậy Amax = 12 tại x= 3/2

zZz Cool Kid_new zZz
25 tháng 6 2019 lúc 10:52

\(C=6x-x^2+3\)

\(C=-\left(x^2-6x+9\right)+12\)

\(C=-\left(x-3\right)^2+12\)

\(\le12\)

Dấu "=" xảy ra khi \(x=3\)

zZz Cool Kid_new zZz
25 tháng 6 2019 lúc 10:54

\(D=2x-6y-x^2-y^2-2\)

\(D=-\left(x^2-2x+1\right)-\left(y^2-6y+9\right)+6\)

\(D=-\left(x-1\right)^2-\left(y-3\right)^2+6\)

\(\le6\)

Dấu "=" xảy ra khi \(x=1;y=3\)

marie
Xem chi tiết
luuthianhhuyen
18 tháng 11 2018 lúc 11:58

\(A=x^2-6x+10\)

\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)

\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\)     \(\forall x\in z\)

\(\Leftrightarrow A_{min}=1khix=3\)

\(B=3x^2-12x+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\)    \(\forall x\in z\)

\(\Leftrightarrow B_{min}=-11khix=2\)

Mobi Gaming
Xem chi tiết
KAl(SO4)2·12H2O
26 tháng 8 2019 lúc 20:09

a) \(3x^3-6x^2=0\)

\(3x^2\left(x-2\right)=0\)

\(\orbr{\begin{cases}3x^2=0\\x-2=0\end{cases}}\)

\(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

b) \(x\left(x-4\right)-12x+48=0\)

\(x^2-4x-12x+48=0\)

\(x^2-16x+48=0\)

\(\left(x-12\right)\left(x-4\right)=0\)

\(\orbr{\begin{cases}x-12=0\\x-4=0\end{cases}}\)

\(\orbr{\begin{cases}x=12\\x=4\end{cases}}\)

c) Viết thiếu nha :v

d) \(2x\left(x-5\right)-x\left(2x+3\right)=16\)

\(2x^2-10x-x^2-2x^2-3x=16\)

\(-13x=16\)

\(x=-\frac{16}{13}\)

e) \(\left(4x^2-1\right)-\left(x-1\right)^2=-3\)

\(4x^2-1-x^2+2x-1=-3\)

\(3x^2-2+2x=-3\)

\(3x^2-2+2x+3=0\)

\(3x^2+1+2x=0\)

Vì \(3x^2+1+2x>0\)nên: 

\(x\in\varnothing\)

Edogawa Conan
26 tháng 8 2019 lúc 20:09

A) 3x3 - 6x2 = 0

=> 3x2(x - 2) = 0

=> \(\orbr{\begin{cases}3x^2=0\\x-2=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

b) x(x - 4) - 12x + 48 = 0

=> x(x - 4) - 12(x - 4) = 0

=> (x - 12)(x - 4) = 0

=> \(\orbr{\begin{cases}x-12=0\\x-4=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=12\\x=4\end{cases}}\)

c) x(x - 4) - (x2 - 8) = x2 - 4x - x2 + 8 = 4x + 8 

Phạm Thị Thùy Linh
26 tháng 8 2019 lúc 20:14

\(a,3x^3-6x^2=0\Rightarrow3x^2\left(x-2\right)=0.\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}}\)

\(b,x\left(x-4\right)-12x+48=0\)

\(\Rightarrow x\left(x-4\right)-12\left(x-4\right)=0\)

\(\Rightarrow\left(x-4\right)\left(x-12\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-4=0\\x-12=0\end{cases}\Rightarrow\orbr{\begin{cases}x=4\\x=12\end{cases}}}\)

\(c,x\left(x-4\right)-\left(x^2-8\right)=0\)

\(\Rightarrow c,x^2-4x-x^2+8=0\)

\(\Rightarrow-4x+8=0\)

\(\Rightarrow-4\left(x-2\right)=0\)

\(\Rightarrow x=2\)

\(d,2x\left(x-5\right)-x\left(2x+3\right)=16\)

\(\Rightarrow2x^2-10x-2x^2-3x=16\)

\(\Rightarrow-13x=16\Leftrightarrow x=-\frac{16}{13}\)

\(e,\left(4x^2-1\right)-\left(x-1\right)^2=-3\)

\(\Rightarrow4x^2-1-x^2+2x-1=-3\)

\(\Rightarrow3x^2+2x+1=0\)

\(\Rightarrow x^2+\frac{2}{3}x+\frac{1}{3}=0\)

\(\Rightarrow x^2+2.x.\frac{1}{3}+\frac{1}{9}+\frac{2}{9}=0\)

\(\Rightarrow\left(x+\frac{1}{3}\right)^2+\frac{2}{9}=0\)( vô lý ) 

Vậy phương trình vô nghiệm