Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Lương Hà
Xem chi tiết
khá Duy
Xem chi tiết
Akai Haruma
7 tháng 6 2021 lúc 0:45

Lời giải:

Gọi giao của $BO$ và $AC$ là $H$

Vì $BA=BC; OA=OC$ nên $BO$ là trung trực của $AC$

$\Rightarrow BO$ vuông góc với $AC$ tại trung điểm $H$ của $AC$.

Do đó $HO$ là đường trung bình ứng với cạnh $CD$ của tam giác $ACD$

$\Rightarrow HO=2$

$BH=BO-HO=R-2$
Theo định lý Pitago:

$BC^2-BH^2=CH^2=CO^2-HO^2$

$\Leftrightarrow (4\sqrt{3})^2-(R-2)^2=R^2-2^2$

$\Leftrightarrow 48-(R-2)^2=R^2-4$

$\Rightarrow R=6$ (cm)

 

Akai Haruma
7 tháng 6 2021 lúc 0:48

Hình vẽ:

Ngọc Phạm
Xem chi tiết
nguyễn trí tâm
Xem chi tiết
Kha Nhu
Xem chi tiết
Ngọc Phạm Kim
Xem chi tiết
OoO Kún Chảnh OoO
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 4 2018 lúc 6:57

a, HS tự chứng minh

b, HS tự chứng minh

c, DAEH vuông nên ta có: KE = KA = 1 2 AH

=> DAKE cân tại K

=>  K A E ^ = K E A ^

DEOC cân  ở O =>  O C E ^ = O E C ^

H là trực tâm => AH  ^ BC

Có  A E K ^ + O E C ^ = H A C ^ + A C O ^ = 90 0

(K tâm ngoại tiếp) => OE ^ KE

d, HS tự làm

BÙI THỊ HIỀN
Xem chi tiết