rút gọn
\(\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}\) với \(x\ge2\)
mn giúp mình nha, thks
rút gọn :
\(\sqrt{x+2\sqrt{2x}-4}+\sqrt{x-2\sqrt{2x}-4}\)\(\left(x\ge2\right)\)
Rút gọn biểu thức:
a) A=\(\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}\)
b) B=\(\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}\)với \(x\ge2\)
phần a nhân căn 2 cả tử và mẫu bạn nha
phần a nhân căn 2 cả tử và mẫu .
bài này mình rồi bạn ạ .
a) Chứng minh
\(x+2\sqrt{2x-4}=\left(\sqrt{2}+\sqrt{x-2}\right)^2\) với \(x\ge2\)
b) Rút gọn biểu thức :
\(\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}\) với \(x\ge2\)
chứng minh:
a) x +\(2\sqrt{2x-4}=\sqrt{2}+\left(x-2\right)^2\) với x\(\ge2\)
b) rút gọn \(\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}\) với x\(\ge2\)
\(VT=x+2\sqrt{2x-4}\)
\(=\left(x-2\right)+2\sqrt{2\left(x-2\right)}+2\)
\(=\left(\sqrt{x-2}+\sqrt{2}\right)^2=VP\left(\text{đ}pcm\right)\)
chứng minh:
x+2\(\sqrt{2x-4}\)= \(\left(\sqrt{2}+\sqrt{x-2}\right)^2\) với \(x\ge2\)
b) rút gọn \(\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}\) với x\(\ge2\)
\(\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}\)
\(=\sqrt{\left(x-2\right)+2\sqrt{2\left(x-2\right)}+2}+\sqrt{\left(x-2\right)-2\sqrt{2\left(x-2\right)}+2}\)
\(=\sqrt{\left(\sqrt{x-2}+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{x-2}-\sqrt{2}\right)^2}\)
\(=\sqrt{x-2}+\sqrt{2}+\left|\sqrt{x-2}-\sqrt{2}\right|\)
Rút gọn các biểu thức sau:
1.\(\sqrt{x-\sqrt{2x-1}}-\sqrt{x+\sqrt{2x-1}}\)
2.\(\sqrt{x+8+6\sqrt{x-1}}-\sqrt{x+2-2\sqrt{x-2}}\)
Mọi người làm nhanh giúp mình nha!
1: \(=\dfrac{1}{\sqrt{2}}\cdot\left(\sqrt{2x-2\sqrt{2x-1}}-\sqrt{2x+2\sqrt{2x-1}}\right)\)
\(=\dfrac{1}{\sqrt{2}}\left(\left|\sqrt{2x-1}-1\right|-\left|\sqrt{2x-1}+1\right|\right)\)
TH1: x>=1
\(A=\dfrac{1}{\sqrt{2}}\left(\sqrt{2x-1}-1-\sqrt{2x-1}-1\right)=-\sqrt{2}\)
TH2: 1/2<=x<1
\(A=\dfrac{1}{\sqrt{2}}\left(1-\sqrt{2x-1}-\sqrt{2x-1}-1\right)=-\sqrt{4x-2}\)
2:
\(=\sqrt{x-1+6\sqrt{x-1}+9}-\sqrt{x-2-2\sqrt{x-2}+1+3}\)
\(=\sqrt{x-1}+3-\sqrt{\left(\sqrt{x-2}-1\right)^2+3}\)
Cho \(P=\frac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+1-\frac{2x+\sqrt{x}}{\sqrt{x}}\)
rút gọn P
giúp mình với mn
\(P=\frac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+1-\frac{2x+\sqrt{x}}{\sqrt{x}}\)( Điều kiện: \(x>0\))
\(=\frac{\sqrt{x}\left(x\sqrt{x}+1\right)}{x-\sqrt{x}+1}+1-2\sqrt{x}-1=\frac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}-2\sqrt{x}\)
\(=x+\sqrt{x}-2\sqrt{x}=x-\sqrt{x}\)
Làm mấy bài này bạn lưu ý điều kiện, vì dù rút gọn đúng mà sót điều kiện thì cũng coi như sai
tích mình với
ai tích mình
mình tích lại
thanks
1) Rút gọn:
\(A=\frac{\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}}{\sqrt{x+\sqrt{2x-1}}+\sqrt{x-\sqrt{2x-1}}}.\sqrt{2x-1}.\)
2) Chứng minh:
\(\sqrt{\sqrt{x}+\sqrt{\frac{x^2-4}{x}}}+\sqrt{\sqrt{x}-\sqrt{\frac{x^2-4}{x}}}=\sqrt{\frac{2x+4}{\sqrt{x}}}\)
GIÚP MK GIẢI 2 BÀI NÀY NHA M.N! THANKS NHÌU! _ mk đang cần gấp lắm!!! T^T
Rút gọn:
\(A=\sqrt{x+\sqrt{x^2-4}}+\sqrt{x-\sqrt{x^2-4}}\)
\(B=\sqrt{10x-6\sqrt{x^2-2x}-2}+\sqrt{5x+4\sqrt{x^2-2x}-2}\)
\(C=\frac{\sqrt{2+\sqrt{-x^2+6x-8}}}{x-3}\)
\(D=\sqrt{\frac{17}{4}+2\sqrt{4-x^2}+\sqrt{4+2\sqrt{4-x^2}}}\)
Giúp mình với các bạn