cho Tam giác ABC vuông tại A, biết AB=6cm, BC=10cm.Tính độ dài cạnh AC và chu vi tam giác ABC
Cho tam giác ABC vuông tại A , biết AB = 6cm , BC = 10 cm . Tính độ dài cạnh AC và chu vi tam giác ABC
Vuông tại A dễ vẽ thôi bn nên mk ko vẽ nữa :))
Áp dụng định lý Py ta go ta có :
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow10^2=6^2+AC^2\)
\(\Leftrightarrow100=36+AC^2\Leftrightarrow AC^2=100-36=84\)
\(\Leftrightarrow AC=8\)
Chu vi Tam giác ABC là
\(6+10+8=24\left(cm\right)\)
cho tam giác ABC vuông tại A, biết độ dài 2 cạnh góc vuông là AB=5cm và AC= 6cm. Tính chu vi tam giác ABC
cho tam giác ABC vuông tại A có AB=6cm AC=8cm.
a) tính độ dài cạnh BC và chu vi tam giác ABC.
b)đường phân giác của góc B cắt AC tại D. Vẽ DH vuông với BC(H thuộc BC). Chứng minh: AB=HB
a. Áp dụng định lí Pi-ta-go vào tam giác ABC vuông, ta có
BC2=AB2+AC2
= 36 + 64 = 100
=> BC = 10 cm
chu vi tam giác ABC là: 36+64+100=200(cm)
1.Cho tam giác ABC cân tại B,biết góc A=40 độ. Tính hai góc B và C
2. Cho tam giác ABC vuông tại A, biết AB =6cm,BC=10cm.TÍnh chu vi tam giác ABC
3.cho tam giác ABC vuông tại A.BD là phân giác của góc B,vẽ DI vuông góc BC(điểm I thuộc BC)
Gọi K là giao điểm của 2 đường thẳng DI và AB.Chứng minh
a.tam giác ABD=tam giác IBD
b.BD vuông góc AI
c. DK=DC
d. Cho AB=6cm,AC=8cm.TÍnh IC
Bài 1: Cho tam giác ABC vuông tại A, biết AB= 6cm, BC= 10cm. Tính độ dài cạnh AC và chu vi tam giác ABC
Làm nhanh hộ mình với rồi mình tick cho :))
Đề dễ thế này cũng nhờ làm hộ à!? :)))))))))
Tam giác ABC vuông tại A
Định lí Pytago: \(BC^2=AB^2+AC^2\)
Suy ra \(10^2=6^2+AC^2\)
=> AC= 8 (cm)
Chu vi tam giác ABC: AB+ BC+ AC= 6 +10 + 8=24 (cm)
Vâng. Dễ thế đấy thì làm sao ? : )
Bài 1: Cho tam giác vuông ABC, vuông góc tại A. Chu vi tam giác là 75cm, Cạnh BC là 45cm. Hỏi:
a) Tổng độ dài của cạnh AB và AC là bao nhiêu?
b) Tính diện tích tam giác vuông ABC, biết cạnh AB hơn cạnh AC là 4cm.
Bài 2: Cho tam giác ABC có chu vi 67cm, cạnh AB và AC có tổng độ dài 47 cm.
a) Tính độ dài BC.
b) Tính diện tích tam giác ABC, biết chiều cao AH là 15cm.
Bài 3: Một tam giác vuông có cạnh góc vuông thứ nhất là 24cm, cạnh góc vuông thứ hai bằng 5/8 cạnh góc vuông thứ nhất. Tính diện tích tam giác vuông đó.
Bài 4: Cho tam giác vuông ABC, vuông góc tại A. Chu vi tam giác là 90cm, Cạnh BC là 45cm. Hỏi:
a) Tổng độ dài của cạnh AB và AC là bao nhiêu?
b)Tính diện tích tam giác vuông ABC, biết cạnh AC bằng 4/5 cạnh AB.
Bài 1:
a: AB+AC=75-45=30(cm)
b: AB=(30+4):2=17(cm)
=>AC=13cm
\(S=17\cdot13=221\left(cm^2\right)\)
Bài 2:
a: BC=67-47=20(cm)
b: \(S=\dfrac{15\cdot20}{2}=15\cdot10=150\left(cm^2\right)\)
Cho tam giác ABC vuông tại A có AB=6cm ,AC=8cm a) tính độ dài cạnh ABC và chu vi tam giác ABC b) kẻ AK vuông góc BC biết AK = 4,8 . Tính BK và CK c) đường phân giác của góc B cắt AC tại D vẽ DH vuông góc vs BC (H thuộc BC). C/m m giác ABH = HBD D) c/m DA < DC
Cho tam giác ABC vuông tại B, đường phân giác góc C cắt AB tại D, đường thẳng kẻ từ A vuông góc với CD kéo dài tại H.
A.Cm tam giác HAD và tam giác BCD đồng dạng
B.Cm AH^2=HD.HC
C.Cho biết AB=6cm,AC=10cm.Tính độ dài đoạn thẳng BC và AD
a: Xét ΔHAD vuông tại H và ΔBCD vuông tại B có
\(\widehat{HDA}=\widehat{BDC}\)
Do đó; ΔHAD~ΔBCD
b: ta có; ΔHAD~ΔBCD
=>\(\widehat{BCD}=\widehat{HAD}\)
mà \(\widehat{BCD}=\widehat{ACD}\)
nên \(\widehat{HAD}=\widehat{ACD}\)
Xét ΔHAD vuông tại H và ΔHCA vuông tại H có
\(\widehat{HAD}=\widehat{HCA}\)
Do đó: ΔHAD~ΔHCA
=>\(\dfrac{HA}{HC}=\dfrac{HD}{HA}\)
=>\(HA^2=HD\cdot HC\)
c: Ta có: ΔABC vuông tại B
=>\(BA^2+BC^2=AC^2\)
=>\(BC^2=10^2-6^2=64\)
=>\(BC=\sqrt{64}=8\left(cm\right)\)
Xét ΔCBA có CD là phân giác
nên \(\dfrac{BD}{BC}=\dfrac{DA}{CA}\)
=>\(\dfrac{BD}{8}=\dfrac{DA}{10}\)
=>\(\dfrac{BD}{4}=\dfrac{DA}{5}\)
mà BD+DA=BA=6cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{4}=\dfrac{DA}{5}=\dfrac{BD+DA}{4+5}=\dfrac{6}{9}=\dfrac{2}{3}\)
=>\(DA=5\cdot\dfrac{2}{3}=\dfrac{10}{3}\left(cm\right)\)
giúp mình với
Cho tam giác ABC vuông tại A, Có AB=6cm: AC=8cm
A, Độ dài cạnh BC và chu vi tam giác ABC.
,B Đường phân giác của góc B cắt AC tại D. Vẽ DH vuông góc với BC
Chứng Minh: Tam giác ABD= Tam giác HBD
C, Chứng Minh DA<DC
BC^2 = AC^2 + BA^2
= 8^2 + 6^2
= 64+36= 100
BC^2 = \(\sqrt{100}\)
⇒BC = 10
CHU VI HÌNH TAM GIÁC LÀ: 10+8+6=24(cm)
xét tam giác ΔABD vs ΔHBD cs
góc A = góc H = 90 độ
AD cạnh chung
góc B1 = góc B2
nên ΔABD = ΔHBD ( ch-gn)
xét ΔHDC cs góc H = 90 độ
⇒DH < DC ( do DC là cạnh huyền )
mà DH = DA ( ΔABD = ΔHBD )
nên DC > DA