Cho x, y nguyên dương thỏa mãn: 1003a + 2b = 2008. Chứng tỏ a 2.
Cho x,y nguyên dương thỏa mãn: 1003a + 2b=2008 . Chứng tỏ a chia hết cho 2
Cho x,y nguyên dương thỏa mãn: 1003a + 2b=2008 . Chứng tỏ a chia hết cho 2 .
( Đề bài hơi lỗi nhưng mik sửa lại nhé ! ) .
Ta có : 1002x + 2y = 2008 .
Vì 2y và 2008 đều là số chẵn nên 1003x cũng là số chẵn .
Mà :
1003 × số chẵn = số chẵn nên x là số chẵn .
\(\Rightarrow\) x chia hết cho 2 .
Vậy x chia hết cho 2 .
1003x+2y=2008
\(\Rightarrow\)Theo đề 1003x<2008 (x>0)
x<2008:1003
x\(\le\) 2,0
Vậy x=1\(\Rightarrow\) y=\(\dfrac{1005}{2}\) (loại)
x=2 \(\Rightarrow\) y=1
Vậy (x;y) : (2;1)
Giải:
Ta có:
\(1003x+2y=2008\)
Vì 2y và 2008 đều là số chẵn nên 1003x là số chẵn
Mà 1003 là số lẻ nên x là số chẵn (vì số lẻ nhân với số chẵn mới bằng số chẵn)
Mà số chẵn luôn ⋮ 2 nên x ⋮ 2
Vậy x ⋮ 2 (đpcm)
Chúc bạn học tốt!
cho x;yl là số nguyên dương thỏa mãn 1003. +2.y = 2008
a, chứng tỏ x : 2
tìm x ;y
a) Ta có: \(1003x+2y=2008\)
Vì 2y và 2008 đều chẵn
=> 1003x chẵn => x chẵn
=> x chia hết cho 2
b) Xét x = 2 => \(2006+2y=2008\Rightarrow y=1\left(tm\right)\)
Nếu \(x\ge4\Rightarrow ktm\)
Vậy x = 2 và y = 1
Cho x, y là hai số nguyên dương thỏa mãn: 1003x + 2y = 2008.
a) Chứng tỏ rằng x chia hết cho 2?
b) Tìm x , y ?
Gíup tui ik tui tick cho
Bạn tham khảo :
a) Vì 2y và 2008 đều là số chẵn nên 1003x cũng là số chẵn.
Mà 1003 × số chẵn = số chẵn nên x là số chẵn.
Vậy x chia hết cho 2
b) Để 1003x là số chẵn < 2008 thì x= 2
Suy ra y= 1
Vậy x= 2, y= 1
Nguồn : H.ọ.c24.vn
a/1003.x+2.y=2008
Ta có 2y chia hết cho 2
2008 chia hết cho 2
==>1003.x chia hết cho 2
Mà 1003 không chia hết cho 2
==> x chia hết cho 2
b/Do x,y nguyên dương
==> 1003.x =< 2008
x=<2
Nếu x=1
1003.1+2y=2008
1003+2y=2008
2y=2008-1003
2y=1005
y=1005:2
y=502,5
Mà y là số nguyên dương
Nên trường hợp x=1;y=502,5 không thoản mãn đề bài.
Nếu x=2
1003.2+2.y=2008
2006+2y=2008
2y=2008-2006
2y=2
y=2:2
y=1
Vậy x=2;y=1
a.1003.x+2.y=2008
Ta có 2y chia hết cho 2
2008 chia hết cho 2
==>1003.x chia hết cho 2
Mà 1003 không chia hết cho 2
==> x chia hết cho 2
b/Do x,y nguyên dương
==> 1003.x =< 2008
x=<2
Nếu x=1
1003.1+2y=2008
1003+2y=2008
2y=2008-1003
2y=1005
y=1005:2
y=502,5
Mà y là số nguyên dương
Nên trường hợp x=1;y=502,5 không thoản mãn đề bài.
Nếu x=2
1003.2+2.y=2008
2006+2y=2008
2y=2008-2006
2y=2
y=2:2
y=1
Vậy x=2;y=1
cho x,y nguyên dương thỏa mãn 1003x + 2y = 2008
a ) Chứng minh rằng x chia hết cho 2
b ) Tìm x,y
a) Vì 2y và 2008 đều là số chẵn nên 1003x cũng là số chẵn.
Mà 1003 × số chẵn = số chẵn nên x là số chẵn.
Vậy x chia hết cho 2
b) Để 1003x là số chẵn < 2008 thì x= 2
Suy ra y= 1
Vậy x= 2, y= 1
giải gấp với đề ôn thi vào 10
1)cho a ≠ 0 b,c là các no của p trình ẩn x : x2 -ax - 1/(2a2) = 0
cmr b4 + c4 ≥ 2 + √2
2) tìm a,b nguyên dương thỏa mãn 1003a +2b = 2008
3) với x ≠ 0 tìm GTNN của biểu thức A= ( x2 -2x+ 2014)/x2
Cho các số nguyên dương a,b,x,y thỏa mãn các đẳng thức: a+b=x+y ; a.b-a=x.y. Chứng tỏ rằng x khác y
1.Cho x,y là số nguyên dương thỏa mãn:
1003x+2y=2008
a/Chứng tỏ rằng x chia hết cho 2
b/Tìm x,y
2.Chứng minh rằng:
2^0+2^1+2^2+...+2^5n-3+2^5n-2+2^5n-1 chia hết cho 31 nếu n là 1 số nguyên dương bất kì.
3.Tìm các số nguyên x sao cho:
a/ 3x+23 chia hết cho x+4
b/x^2+3x-3 là B(x-2)
4.Tìm x,y thuộc Z biết:
3x+4y-x.y=15
Giúp mình với nha mình cần gấp ^_^ ahihihihi!
a.Vì x,y là số nguyên dương
=> 1003 và 2y cũng là số nguyên dương
Vì 2008 là số chẵn
mà 2y cũng là số chẵn
=> 1003x là số chẵn
Vì 1003 là số lẻ
mà 1003x là số chẵn
=> x là số chẵn
=> x chia hết cho 2 (đpcm)
Vậy ta có đpcm
1.các số sau có phải số chính phương không? vì sao?
A=10^15+1
B=3^2005+3^2006+2^2007+3^2008+...+3^2015
C=11^2008+11^2009+11^2010+...+11^2015
2.cho x,y,z là số nguyên thỏa mãn x^2+y^2=3z^2.chứng tỏ x,y,z đều chia hết cho 3
Thấy số chính phương là các số có dạng 3k hoặc 3k+1
A=1015+1=1000.....000000000001
Tổng các chữ số của A là 1+0+0+...+0+1=2
2 có dạng 3k+2
=> A có dạng 3k+2 nên A ko phải số chính phương
B chia hết cho B thì chắc chia hết cho 3
C thì
2) x2 + y2 = 3z2 => x2 + y2 chia hết cho 3
Vì x2 ; y2 là số chính phương nên x2 ; y2 chia cho 3 dư 0 hoặc 1
Nếu x2 hoặc y2 hoặc x2 và y2 chia cho 3 dư 1 => x2 + y2 chia cho 3 dư 1 hoặc 2 ( trái với đề bai)
=> x2 ; y2 đều chia hết cho 3. 3 là số nguyên tố => x; y đều chia hết cho 3
=> x2; y2 chia hết cho 9 => 3z2 chia hết cho 9 => z2 chia hết cho 3 ; 3 là số nguyên tố => z chia hết cho 3
Vậy...
Bài 2:
x2 + y2 = 3z2 => x2 + y2 chia hết cho 3
Vì x2 ; y2 là số chính phương nên x2 ; y2 chia cho 3 dư 0 hoặc 1
Nếu x2 hoặc y2 hoặc x2 và y2 chia cho 3 dư 1
=> x2 + y2 chia cho 3 dư 1 hoặc 2
=> x2 ; y2 đều chia hết cho 3. 3 là số nguyên tố
=> x; y đều chia hết cho 3
=> x2; y2 chia hết cho 9
=> 3z2 chia hết cho 9
=> z2 chia hết cho 3 ;
3 là số nguyên tố
=> z chia hết cho 3
Vậy................
hok tốt