Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Xem chi tiết
☣Hoàng Huy☣
2 tháng 11 2019 lúc 12:01

Vì n2 + 2n + 12 là số chính phương nên đặt n2 + 2n + 12 = k2 (k thuộc N)

Suy ra (n2 + 2n + 1) + 11 = k2

Suy ra k2 – (n+1)2 = 11

Suy ra (k+n+1)(k-n-1) = 11

Nhận xét thấy k+n+1 > k-n-1 và chúng là những số nguyên dương, nên ta có thể viết : (k+n+1)(k-n-1) = 11.1

+ Với k+n+1 = 11 thì k = 6

Thay vào ta có : k – n - 1 = 1

6 - n - 1 =1 Suy ra n = 4

Khách vãng lai đã xóa
Aug.21
2 tháng 11 2019 lúc 12:10

Đặt \(n^2+2n+18=a^2\left(a\inℕ;n\inℕ\right)\)

\(\Leftrightarrow a^2-\left(n+1\right)^2=17\)

\(\Leftrightarrow\left(a+n+1\right)\left(a-n-1\right)=17\)

Vì \(a\inℕ;n\inℕ\) nên  \(\left(a+n+1\right)>\left(a-n-1\right)\); 17 là số nguyên tố

\(\Rightarrow a+n+1=17\)(*)

và a - n - 1 = 1 hay a = n + 2 

Thay a = n +2 vào (*)  tính được n = 7

Khách vãng lai đã xóa
Nguyễn Xuân Hiếu đẹp zai...
Xem chi tiết
Lê Nhật Khôi
16 tháng 2 2019 lúc 21:42

Vì \(n^2+2n+12\) là scp nên 

\(n^2+2n+12=k^2\)

\(\Leftrightarrow\left(n^2+2n+1\right)+11=k^2\)

\(\Leftrightarrow k^2-\left(n+1\right)^2=11\)

\(\Leftrightarrow\left(k-n-1\right)\left(k+n+1\right)=11\)

Vì k-n-1<k+n+1 nên

\(\left(k-n-1\right)\left(k+n+1\right)=1\cdot11\)

\(\hept{\begin{cases}k-n-1=1\\k+n+1=11\end{cases}\Leftrightarrow\hept{\begin{cases}k-n=2\\k+n=10\end{cases}\Leftrightarrow}\hept{\begin{cases}k=6\\n=4\end{cases}}}\)

Vậy n=4

b) Tương tự

Nguyễn Xuân Hiếu đẹp zai...
16 tháng 2 2019 lúc 21:54

cảm ơn bạn

Đào Linh
Xem chi tiết

đặt 2n + 34 = a^2

34 = a^2-n^2

34=(a-n)(a+n)

a-n thuộc ước của 34 là { 1; 2; 17; 34} và a-n . Ta có bảng sau ( mik ko bt vẽ)

=>     a-n        1        2 

         a+n        34      17

        Mà tổng và hiệu 2 số nguyên cùng tính chẵn lẻ

      Vậy ....

Ta cóS = 14 +24 +34 +···+1004 không là số chính phương.

=>  S= (1004+14).100:2=50 900 ko là SCP

Nguyễn Lê Phước Thịnh
9 tháng 5 2023 lúc 15:33

2: A=n^2+3n+2=(n+1)(n+2)

Để A là số nguyên tố thì n+1=1 hoặc n+2=2

=>n=0

thuc phamtri
Xem chi tiết
Nguyễn Thị Thùy Dương
16 tháng 11 2015 lúc 19:38

giả sử

n2 +2n+12 =k2

=>k2 - n2 =2(n+6)

=>(k+n)(k-n) =2(n+6)

=> k=6 ; n =4 

vậy n =4

Hoàng Ngọc Ý Thơ
Xem chi tiết
Trần Nam Khánh
Xem chi tiết
Nguyễn Mạnh Trung
Xem chi tiết
vũ thái bảo
Xem chi tiết
Nguyễn Thị Lê Vy
Xem chi tiết
Tạ Đức Hoàng Anh
8 tháng 1 2021 lúc 14:18

Vì \(n\)là số tự nhiên có 2 chữ số

\(\Rightarrow\)\(10\le n\le99\)\(\Rightarrow\)\(21\le2n+1\le199\)

Vì \(2n+1\)là số chính phương lẻ

\(\Rightarrow\)\(2n+1\in\left\{25;49;81;121;169\right\}\)

\(\Rightarrow\)\(2n\in\left\{24;48;80;120;168\right\}\)

\(\Rightarrow\)\(n\in\left\{12;24;40;60;84\right\}\)

Thay lần lượt các giá trị của \(n\)vào \(3n+1,\)ta có:

+ Với \(n=12\)\(\Rightarrow\)\(3n+1=3\times12+1=37\left(L\right)\)

+ Với \(n=24\)\(\Rightarrow\)\(3n+1=3\times24+1=73\left(L\right)\)

+ Với \(n=40\)\(\Rightarrow\)\(3n+1=3\times40+1=121\left(TM\right)\)

+ Với \(n=60\)\(\Rightarrow\)\(3n+1=3\times60+1=181\left(L\right)\)

+ Với \(n=84\)\(\Rightarrow\)\(3n+1=3\times84+1=253\left(L\right)\)

Vậy \(n=40\)

Chúc bn hok tốt ^_^

Khách vãng lai đã xóa