Xác định x thuộc R để biểu thức A=\(\sqrt{x^2+1}-x-\frac{1}{\sqrt{x^2+1}-x}\) là một số tự nhiên.
Xác định x thuộc R để biểu thức A=\(\sqrt{x^2+1}-x-\frac{1}{\sqrt{x^2+1}-x}\)là một số tự nhiên
Bài 1. (2,0 điểm)
a) Cho biểu thức: \(A = \left( {\frac{{2\sqrt x + 1}}{{x + 2\sqrt x + 1}} + \frac{{1 - 2\sqrt x }}{{x - 1}}} \right).\left( {1 + \frac{1}{{\sqrt x }}} \right)\) với x>0;x≠1. Rút gọn biểu thức A và tìm các giá trị nguyên của x để A là số nguyên.
b) Cho biểu thức:
\(M = \left( {\sqrt x + \sqrt {x + 1} + \sqrt {x + 2} } \right)\left( {\sqrt x + \sqrt {x + 1} - \sqrt {x + 2} } \right)\left( {\sqrt x - \sqrt {x + 1} + \sqrt {x + 2} } \right)\left( { - \sqrt x + \sqrt {x + 1} + \sqrt {x + 2} } \right)\)
Với x là số tự nhiên khác 0. Chứng minh M cũng là số tự nhiên.
1. Cho biểu thức P = \(\frac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-\frac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+1\) (với x > 0)
a) Rút gọn biểu thức P
b) Cho x=100, tính giá trị của P
c) Tìm GTNN của P
2. Cho biểu thức A=\(\left(\frac{x+\sqrt{9x}-1}{x+\sqrt{x}-2}-\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}+2}\right):\frac{1}{x-1}\) (với x \(\ge\) 0, x \(\ne\) 1)
a) Rút gọn biểu thức A
b) Tìm số tự nhiên x để \(\frac{1}{A}\) là số tự nhiên
Cho biểu thức P=\(\left(\frac{3x-\sqrt{9x}-3}{x+\sqrt{x}-2}+\frac{1}{\sqrt{x}-1}+\frac{1}{\sqrt{x}+2}\right):\frac{1}{x-1}\)
a/Tìm điều kiện để P có nghĩa. Rút gọn P
b/Tìm các số tự nhiên x để \(\frac{1}{P}\)là số tự nhiên
a) đk: \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)
Ta có:
\(P=\left(\frac{3x-\sqrt{9x}-3}{x+\sqrt{x}-2}+\frac{1}{\sqrt{x}-1}+\frac{1}{\sqrt{x}+2}\right)\div\frac{1}{x-1}\)
\(P=\frac{3x-3\sqrt{x}-3+\sqrt{x}+2+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\cdot\left(x-1\right)\)
\(P=\frac{3x-\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\cdot\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+1\right)\)
\(P=\frac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+2\right)\left(\sqrt{x}+1\right)}{\sqrt{x}+2}\)
\(P=\frac{\left(3\sqrt{x}+2\right)\left(x-1\right)}{\sqrt{x}+2}\)
1. Cho biểu thức P = \(\frac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-\frac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+1\) (với x > 0)
a) Rút gọn biểu thức P
b) Cho x=100, tính giá trị của P
c) Tìm GTNN của P
2. Cho biểu thức A=\(\left(\frac{x+\sqrt{9x}-1}{x+\sqrt{x}-2}-\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}+2}\right):\frac{1}{x-1}\) (với x \(\ge\) 0, x \(\ne\) 1)
a) Rút gọn biểu thức A
b) Tìm số tự nhiên x để \(\frac{1}{A}\) là số tự nhiên
1, a, ĐKXĐ: x > 0
\(\Rightarrow P=\frac{\sqrt{x}\left(x\sqrt{x}+1\right)}{x-\sqrt{x}+1}-\left(2\sqrt{x}+1\right)+1\)
\(\Rightarrow P=\frac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}-2\sqrt{x}-1+1\)
\(\Rightarrow P=\sqrt{x}\left(\sqrt{x}+1\right)-2\sqrt{x}\)
\(\Rightarrow P=x+\sqrt{x}-2\sqrt{x}\)
\(\Rightarrow P=x-\sqrt{x}\)
b, Thay x=100 vào biểu thức P, ta có:
P= 100 - \(\sqrt{100}\)
\(\Rightarrow P=100-10=90\)
Vậy với x=100 thì P=90
c, Ta có: P= \(x-\sqrt{x}=\left(\sqrt{x}-\frac{1}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)
Dấu "=" xảy ra khi...
2, a, ĐKXĐ: x \(\ge\) 0, x \(\ne\) 1
\(\Rightarrow A=\left(\frac{x+3\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}+2}\right):\frac{1}{x-1}\)
\(\Rightarrow A=\left(\frac{x+3\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\frac{\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\frac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right).\frac{x-1}{1}\)
\(\Rightarrow A=\left(\frac{x+3\sqrt{x}-1-\sqrt{x}-2-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right).\frac{x-1}{1}\)
\(\Rightarrow\)A= \(\frac{x+\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}.\frac{x-1}{1}\)= x-1
b, Để \(\frac{1}{A}\)là số tự nhiên (x \(\ge0\), \(x\ne1\))
\(\Rightarrow x-1=1\)
\(\Rightarrow x=2\)
Vậy x=2 thì \(\frac{1}{A}\) là số tự nhiên.
cho biểu thức B = \(\left(\frac{\sqrt{x}+2}{\sqrt{x}-1}-\frac{\sqrt{x}-2}{\sqrt{x}+1}\right).\frac{x-1}{\sqrt{x}+2}\)
a tính điều kiện để biểu thức B được xác định
b, Rút gọn B
Cho biểu thức :
A= \(\left(\frac{\sqrt{x}-2}{\sqrt{x}-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\frac{x^2-2x+1}{2}\)
a) Xác định x để A tồn tại .
b) Rút gọn .
c) Tìm x thuộc Z để A nhận giá trị nguyên .
d) Tìm x để A nhận giá trị âm .
Cho biểu thức E = \(\left(\frac{\sqrt{x}}{\sqrt{x}-3}+\frac{\sqrt{x}+1}{\sqrt{x}+3}-\frac{2\sqrt{x}}{\sqrt{x}-1}\right)\div\frac{-x+14\sqrt{x}+3}{x\sqrt{x}-4x+3\sqrt{x}}\)
a. Tìm điều kiện để biểu thức được xác định
b. Rút gọn biểu thức
Câu 1: Cho biểu thức:\(D=\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)
a) Rút gọn biểu thức b)Tìm x để D < 1 c) Tìm GT nguyên của x để D thuộc Z
Câu 2: Cho biểu thức: \(P=\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}}+\frac{1-\sqrt{x}}{x+\sqrt{x}}\right)\)
a) Rút gọn P b) Tính GT của P biết \(x=\frac{2}{2+\sqrt{3}}\)
Câu 3: Cho biểu thức: \(A=\left(\frac{4\sqrt{x}}{2+\sqrt{x}}+\frac{8x}{4-x}\right):\left(\frac{\sqrt{x}-1}{x-2\sqrt{x}}-\frac{2}{\sqrt{x}}\right)\)
a) Tìm GT của x để A xác định b) Rút gọn A c) Tìm x sao cho A > 1