Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tô Thu Huyền
Xem chi tiết
long tran TV
Xem chi tiết
Chanhh
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 9 2021 lúc 13:32

Bài 1: 

Xét ΔABC và ΔBAD có 

AB chung

BC=AD

AC=BD

Do đó: ΔABC=ΔBAD

Suy ra: \(\widehat{BAC}=\widehat{ABD}\)

hay \(\widehat{EAB}=\widehat{EBA}\)

hay ΔEAB cân tại E

Như
Xem chi tiết
Cô Hoàng Huyền
12 tháng 3 2018 lúc 15:22

a) Xét tứ giác ABEC có  AB // CE; AC // BE .

Vậy nên ABEC  là hình bình hành. Suy ra AB = CE.

Do MN là đường trung bình hình thang ABCD nên ta có :

\(MN=\frac{AB+DC}{2}=\frac{CE+DC}{2}=\frac{DE}{2}.\)

b) Do ABCD là hình thang cân nên ta có:

\(AD=BC;DB=AC\)

Xét tam giác ABD và tam giác BAC có:

Cạnh AB chung

AD = BC

BD = AC

\(\Rightarrow\Delta ABD=\Delta BAC\left(c-c-c\right)\)

\(\Rightarrow\widehat{ABD}=\widehat{BAC}\) hay \(\widehat{ABO}=\widehat{BAO}\)

Xét tam giác OAB có \(\widehat{ABO}=\widehat{BAO}\) nê OAB là tam giác cân tại O.

c) Do ABEC là hình bình hành nên AC = BE

Lại có AC = BD nên BD = BE

Suy ra tam giác BDE cân tại B.

Tam giác cân BDE có BH là đường cao nên đồng thời là đường trung tuyến.

Lại có theo câu a thì MN = DE/2

Giả thiết lại cho MN = BH. Vậy nên BH = DE/2

Xét tam giác BDE có trung tuyến BH bằng một nửa cạnh tướng ứng nên BDE là tam giác vuông tại B.

Vậy BDE là tam giác vuông cân tại B. 

Minh Trúc Lỗ
Xem chi tiết
Ta Quynha Anh
Xem chi tiết
vũ thị thanh huyền
7 tháng 9 2019 lúc 18:42

vì oa=ob

=>tam giác aob là tam giác cân tại o (đn tam giác cân)

=>góc oab=góc oba

   mà  ab//cd 

=> abcd là hình thang cân

đúng thì k cho mik vs ạ

Hồng Hạnh Nguyễn Thị
Xem chi tiết
Hồ Hiền Nhân
Xem chi tiết
Nguyễn Huệ Lam
25 tháng 6 2017 lúc 16:32

            ABCD1520HI

a) 

\(\Delta ABC\)vuông tại A

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{15^2+20^2}=20\left(cm\right)\)

BD là đường phân giác của \(\Delta ABC\)

\(\Rightarrow\frac{AD}{AB}=\frac{CD}{BC}=\frac{AD+CD}{AB+BC}=\frac{AC}{AB+BC}=\frac{20}{15+25}=\frac{1}{2}\)

\(\Leftrightarrow\frac{AD}{AB}=\frac{1}{2}\Rightarrow AD=\frac{AB}{2}=\frac{15}{2}=7,5\left(cm\right)\)

b)

Xét \(\Delta ABC\)và \(\Delta HBA\)CÓ:

\(\widehat{BAC}=\widehat{AHB}\left(=90^ô\right)\)

\(\widehat{ABC}\)là góc chung (gt)

Suy ra \(\Delta ABC\)đồng dạng với \(\Delta HBA\)(g.g)

\(\Rightarrow\frac{AB}{HB}=\frac{BC}{BA}=\frac{AC}{AH}\Rightarrow\hept{\begin{cases}AH=\frac{AB.AC}{BC}\\HB=\frac{AB^2}{BC}\end{cases}\Leftrightarrow\hept{\begin{cases}AH=\frac{15.20}{25}=12\left(cm\right)\\HB=\frac{15^2}{25}=9\left(cm\right)\end{cases}}}\)

c)

Xét \(\Delta ABD\)và \(\Delta HBI\)có;

\(\widehat{BAD}=\widehat{BHI}=90^o\)

\(\widehat{ABD}=\widehat{HBI}\left(gt\right)\)

SUY RA \(\Delta ABD\)đồng dạng với \(\Delta HBI\)(g.g)

\(\Rightarrow\frac{AB}{HB}=\frac{BD}{BI}\Leftrightarrow AB.BI=BD=HB\)

d)

\(\Delta ABD\)đồng dạng với \(\Delta HBI\) ( Theo câu c)

\(\frac{AD}{HI}=\frac{AB}{HB}\Rightarrow HI=\frac{AD.HB}{AB}=\frac{7,5.9}{15}=4,5\left(cm\right)\)

Ta có:

\(AI=AH-HI=12-4,5=7,5\left(cm\right)\)

Mà AD=7,5 cm

nên \(\Delta ADI\)cân tại A

e)

\(\Delta ABD\)đồng dạng vớI \(\Delta HBI\)( Theo câu c)

\(\Rightarrow\frac{AD}{IH}=\frac{BD}{BI}\Leftrightarrow AI.BI=BD.IH\)

Vũ Minh Hiếu
Xem chi tiết