Nếu đa thức F(x)=2ax+5 có nghiệm là 1 thì giá trị của a là gì giải giúp mình nha
Giá trị của a để đa thức 2ax + 4 có nghiệm là -1 là:
A. a = 2
B. a = -2
C. a = -1
D. a = 1
Để đa thức có nghiệm là -1 thì 2a.(-1) + 4 = 0 ⇒ -2a + 4 = 0 ⇒ a = 2. Chọn A
Cho đa thức A(x) = \(x^2-2ax+2a^2+b^2-5=0\) có nghiệm. Tìm giá trị nhỏ nhất của đa thức P =(a+1)(b+1)
Đa thức có nghiệm \(\Rightarrow\Delta'=a^2-\left(2a^2+b^2-5\right)\ge0\)
\(\Rightarrow a^2+b^2\le5\)
\(P=\left(a+1\right)\left(b+1\right)=ab+a+b+1=\dfrac{\left(a+b\right)^2-\left(a^2+b^2\right)}{2}+a+b+1\)
\(P\ge\dfrac{\left(a+b\right)^2-5}{2}+a+b+1=\dfrac{1}{2}\left(a+b+1\right)^2-2\ge-2\)
\(P_{min}=-2\) khi \(\left\{{}\begin{matrix}a^2+b^2=5\\a+b+1=0\end{matrix}\right.\) \(\Rightarrow\left(a;b\right)=\left(2;-1\right);\left(-1;2\right)\)
Cho đa thức f(x) = ax^2 + bx + c
a, Chứng minh rằng nếu a + b + c = 0 thì đa thức f(x) có nghiệm x = 1
b, Chứng minh rằng a - b + c = 0 thì đa thức f(x) có nghiệm bằng -1
Giải chi tiết giùm nha ai giải được mình like cho
a,a+b+c=0 <=>c=-a-b
Khi đ f(x)=ax^2+bx-a-b
f(x)=a(x^2-1)+b(x-1)=(x-1)(ax+a+b)
=>f(x) có nghiệm x=1
b,a-b+c=0 <=>c=b-a
Khi đó f(x)=ax^2+bx+b-a
f(x)=a(x^2-1)+b(x+1)=(x+1)(ax-a+b)
=>f(x) có nghiệm x=-1
a. Ta có: \(f\left(1\right)=a.1^2+b.1+c\)
\(f\left(1\right)=a+b+c\)
Mà theo đề bài có a+b+c=0
=>\(f\left(1\right)=0\)
x=1 là một nghiệm của đa thức f(x)
Phần b bạn làm tương tự nhé
Cho đa thức f(x) = ax^2 + bx + c
a , Chứng minh nếu a + b + c = 0 thì đa thức f ( x) có nghiệm x = 1
b, Chứng minh rằng a - b + c = 0 thì đa thức f ( x) có nghiệm bằng -1
giải chi tiết giùm mình nha
mình đang học chuyên đề về đa thức thì thấy có cái định lý này:
Nếu a là nghiệm nguyên của f(x) và f(1); f(- 1) khác 0 thì f(1) a - 1 và f(-1) a + 1 đều là số nguyên. Để nhanh chóng loại trừ nghiệm là ước của hệ số tự do
mình đọc câu này hoài mà không hiều, ai giải thích giúp đi
a là nghiệm của đa thức f(x) thì f(a) = 0
còn x = -1;1 k phải là nghiệm nên f(-1);f(1) khác 0
bn thay x = a (đk nguyêm) ; = 1; =1 vào là tìm dc
Trước hết bạn nên nhớ tính chất này (được suy ra từ định lí Bê - du hay ng` ta thường gọi nó là hệ quả của đlí Bê - du)
Nếu đa thức f(x) có a là nghiệm thì khi phân tích ra nhân tử, f(x) chắc chắn có một thừa số là x - a
Cái này rất dễ chứng minh, bạn dựa Bê - du: " Số dư trong phép chia f(x) cho x - a đúng bằng f(a)"
Khi a là nghiệm của f(x) thì f(a) = 0 \Rightarrow f(x) chia hết cho x - a \Rightarrow f(x) = (x - a). B(x)
Bây giờ đến phần chứng minh phần chính của định lí nghiệm đa thức : Nghiệm nguyên của đa thức(nếu có) phải là ước của hệ số tự do.
Thật vậy giả sử đa thức aoxn+a1xn−1+a2xn−2+...+an−1.x+anaoxn+a1xn−1+a2xn−2+...+an−1.x+an với các hệ số a0→an∈Za0→an∈Z, có nghiệm x = a (a∈Z)(a∈Z)
Thế thì cần chứng minh a là ước của anan
Thật vậy: Theo hệ quả của định lí Bê - du ta có :
aoxn+a1xn−1+a2xn−2+...+an−1.x+an=(x−a)(b0xn−1+b1xn−2+b2xn−3+...+bn−1)aoxn+a1xn−1+a2xn−2+...+an−1.x+an=(x−a)(b0xn−1+b1xn−2+b2xn−3+...+bn−1)
trong đó b0→bn−1∈Zb0→bn−1∈Z
Hạng tử bậc thấp nhất ở VP là −a.bn−1−a.bn−1, hạng tử bậc thấp nhất VT là anan
Do vậy nếu đồng nhất 2 đa thức trên ta sẽ có :
−abn−1=an−abn−1=an tức là a là ước số của anan
không hiểu chỗ nào thì hỏi mình .
Cho biết a và b là các số thực thay đổi sao cho đa thức A(x) = x^2-2ax+2a^2+b^2 - 5 có nghiệm. Hãy tìm giá trị nhỏ nhất của biểu thức P=(a+1)(b+1)
Để phương trình có nghiệm thì :
\(\Delta_x=a^2-\left(2a^2+b^2-5\right)\ge0\)
\(\Leftrightarrow a^2+b^2\le5\)
\(\Leftrightarrow\left(a+b\right)^2\le5+2ab\)
\(\Leftrightarrow ab\ge\frac{\left(a+b\right)^2-5}{2}\)
Ta có :
\(P=\left(a+1\right)\left(b+1\right)=ab+a+b+1\)
\(\ge\frac{\left(a+b\right)^2-5}{2}+\left(a+b\right)+1=\frac{1}{2}\left(a+b+1\right)^2-2\ge-2\)
Dấu " = " xảy ra khi \(\hept{\begin{cases}a=-2\\b=1\end{cases}}\)
Cho đa thức f(x) = ax^2 + bx + c
a, Chứng minh nếu a + b + c = 0 thì đa thức f(x) có nghiệm x = 1
b, Chứng minh rằng a - b + c = 0 thì đa thức f(x) có nghiệm bằng -1
Giải chi tiết giùm mình nha ai giải dc sẽ like
a) Thay x = 1 ta có :
F(1) = a.1^2 + b.1 + c = a + b + c = 0
Vậy x = 1 là nghiệm của f(x)
b) thay x = -1 ta có :
f(-1) = a. (-1)^2 + b.(-1) + c
= a - b + c = 0
VẬy x = -1 là nghiệm của f(x) nếu a - b + c = 0
Xét đa thức f (x) = ax + b. chứng minh rằng nếu có hai giá trị khác.nhau x = x1; x = x2 là nghiệm của f (x) thì a= b = 0
khi x=0, suy ra: f(0)=0+b=0 suy ra: b=0
khi x=1, suy ra: f(1)=a+b=0
suy ra: a+0=0
suy ra: a=0
vậy khi f(x) có 2 giá trị khác nhau thì a=b=0
Đa thức f(x) có hai giá trị khác nhau là x1 và x2
=> f(x1)=ax1+b=0
và f(x2)=ax2+b=0
=> ax1+b=ax2+b
=> ax1=ax2
=> ax1-ax2=0
=> a(x1-x2)=0
=> a=0 hoặc (x1-x2)=0
Mà x1 và x2 là hai giá trị khác nhau
=>x1 khác x2
=> x1-x2 khác 0
=> a=0
Có ax1+b=0
=> 0x1+b=0+b=0
=> b=0
Vậy ...
1)Cho đa thức:
f(x)=a+b(x-1). Tìm a,b biết x=0 là một nghiệm và f(1)=5
2)Cho đa thức f(x)=a+b(x-1)+x(x-1).Tìm a,b,c biết f(1)=2,f(0)=3 và 2 là một nghiệm của đa thức f(x)
giúp mình vs nha