Bài 14. Cho tam giác ABC vuông tại A, phân giác BD, kẻ DE vuông góc với BC tại E. Trên tia đối của tia AB lấy F sao cho AF — CE. CMR:
a) AABD AEBD
b) BD là đường trung trực của AE
c) AD < DC.
d) E, D, F thẳng hàng và BD LCF.
e) 2(AD+AF) > CF.
Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ DE vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng: a) BD là đường trung trực của AE. b) AD<DC c) Ba điểm E, D, F thẳng hàng
C2
Xét tam giác ADF và tam giác EDC có :
DA = DE ( Cmt )
DEF = DEC
AF = EC ( Cmt )
=) ........ ( c.g.c )
=) ADF = EDC ( ...)
mà : EDC + EDA = 180 ĐỘ
=) EDA + ADF = 180 độ
=) E D F thẳng hàng
k cko mk ddi
Gửi Tôn Hà Vy
a) CM BD là đường trung trực của AE
Xét tam giác ABD ( góc A = 90 độ ) và tam giác BDE ( góc E = 90 độ ) có :
góc ABD = góc DBE ( vì BD là p/giác )
BD là cạnh chung
=) tam giác ABD = tam giác BDE ( ch - gn )
AB = BE ( hai cạnh tương ứng )AD = DE ( hai cạnh tương ứng )Ta có :
AB = BE ( Cmt )
=) B thuộc đường trung trực của tam giác ABC (1)
AD = DE ( Cmt )
=) D thuộc đường trung trực của tam giác ABC (2)
Từ (1) và (2)
=) BD là đường trung trực của AE
b) CM AD<DC
Xét tam giác vuông DEC có :
DC là cạnh huyền
=) DC là cạnh lớn nhất
=) DC > DE
mà DE = AD ( Cmt )
=) AD < DC
c) CM Ba điểm E, D, F thẳng hàng
Xét tam giác AFC có :
đường cao FE và đường cao CA đi qua D
=) D là trực tâm của tam giác AFC
=) E D F thẳng hàng
C2
Xét tam giác ADF và tam giác EDC có :
DA = DE ( Cmt )
Cho tam giác ABC VUÔNG TẠI A , PHÂN GIÁC BD . Kẻ DE VUÔNG GÓC VỚI BC . TRÊN TIA ĐỐI CỦA CÁC TIA AB LẤY ĐIỂM F SAO CHO AF=CE
a, BD LÀ TRUNG TRỰC CỦA AE
B, AD<DC
c,D,E,F THẲNG HÀNG,
Cho tam giác ABC vuông tại A, phân giác BD, kẻ DE vuông góc với BC tại E. Trên tia đối của tia AB lấy F sao cho AF = CE. CMR:
a) BD là đường trung trực của AE.
b) AD< DC . c) E, D, F thẳng hàng và BDvuông góc CF .
d) 2(AD + AF) > CF
Các bạn giúp mik câu d với!!
Bài làm:
d) Từ các phần a,b,c có lẽ bn đã CM được:
\(\hept{\begin{cases}DE=AD\\FA=CE\end{cases}}\)
Xét trong tam giác DEC có: \(DE+EC>DC\) (bất đẳng thức trong tam giác)
Ta có: \(2\left(AD+AF\right)=AD+AD+AF+AF\)
\(=AD+AF+\left(AD+AF\right)\)
\(=AD+AF+\left(DE+EC\right)\)
\(>AD+AF+DC=AF+\left(AD+DC\right)\)
\(=AF+AC>FC\) (bất đẳng thức giữa 3 cạnh trong tam giác AFC)
=> \(2\left(AD+AF\right)>CF\)
Cho tam giác ABC vuông tại A và tia phân giác BD. Qua D kẻ đường thẳng vuông góc với BC tại E. CMR:
a) tam giác BAD = tam giác BED
b) BD là trung trực của AE
c) AD < DC
d) Trên tia đối của tia AB lấy F sao cho AF = CE. CM 3 điểm E, D, F thẳng hàng
a) Vì tam giác ABC vuông tại A(gt)
=)Â=90 độ
=)tam giác BAD là tam giác vuông tại A
Vì DE vuông góc vs BC (gt)
=)Ê =90 độ
=)tam giác BED là tam giác vuông tại E
xét tam giác BAD vuông tại A và tam giác BED vuông tại E có
Góc ABD =Góc EBD(vì BD là tia phân giác)
BD là cạnh chung
=) tam giác BAD=tam giác BED(ch-cgv)
Xét 2 tam giác vuông ABD và EBD có
Góc ABD=góc EBD(gt)
Cạnh huyền BD chung
=)) tam giác ABD=tam giácEBD (ch-gn)
Cho tam giác ABC vuông tại A và tia phân giác BD. Qua D kẻ đường thẳng vuông góc với BC tại E. CMR:
a) tam giác BAD = tam giác BED
b) BD là trung trực của AE
c) AD < DC
d) Trên tia đối của tia AB lấy F sao cho AF = CE. CM 3 điểm E, D, F thẳng hàng
Bài 3:Cho tam giác ABC vuông tại A, phân giác BD. Kẻ DE vuông góc với BC (E thuộc Bc). Trên tia đối của tia AB lấy điểm F sao cho À = CE. Chứng minh:
a)BD là đướng trung trực của AE b) AD < DC
c) Ba điểm E,D,F thẳng hàng.
Bài 3:Cho tam giác ABC vuông tại A, phân giác BD. Kẻ DE vuông góc với BC (E thuộc Bc). Trên tia đối của tia AB lấy điểm F sao cho À = CE. Chứng minh:
a)BD là đướng trung trực của AE b) AD < DC
c) Ba điểm E,D,F thẳng hàng.
Cho tam giác ABC vuông tại A, đường phân giác BD. Kẻ DE vuông góc BC (E thuộc BC).Trên tia đối của tia AB lấy điểm F sao cho AF=CE. Chứng minh
a/ Tam giác ABD=tam giác EBD
b/ BD là đường trung trực của đoạn thẳng AE
c/ AD<DC
d/ Góc ADF=góc EDC và E,D,F thẳng hàng
cho tam giác ABC vuông tại A Phân giác BD, kẻ DE vuông góc BC. Trên tia đối AB lấy F sao cho AF=CE
a) tam giác ABD= tam giác EBD
b) BD là đường trung trực AE
c) AD<DC
d) E, D, F thẳng hàng và BD vuông góc CF
e) 2(AD + AE) > CF