Cho A=1+7+7^2+7^3+…+7^2019+7^2020. Tìm số dư của A khi chia A cho 57
Giúp mình với!
Cho \(A=1+7+7^2+7^3+...+7^{2019}+7^{2020}\)
Tìm số dư khi chia A cho 19.
Ta có :
\(A=\left(1+7+7^2\right)+\left(7^3+7^4+7^5\right)+...+\left(7^{2018}+7^{2019}+7^{2020}\right)\)
\(=\left(1+7+7^2\right)+7^3\left(1+7+7^2\right)+...+7^{2018}\left(1+7+7^2\right)\)
\(=\left(1+7+7^2\right)\left(1+7^3+7^6+...+7^{2018}\right)\)
\(=57\cdot\left(1+7^3+7^6+...+7^{2018}\right)\)
\(=19\cdot3\cdot\left(1+7^3+7^6+...+7^{2018}\right)⋮19\) (đpcm)
\(A=1+7+7^2+7^3+...+7^{2019}+7^{2020}\)
\(\Leftrightarrow A=\left(1+7+7^2\right)+\left(7^3+7^4+7^5\right)+....+\left(7^{2018}+7^{2019}+7^{2020}\right)\)
\(\Leftrightarrow A=\left(1+7+49\right)+7^3\left(1+7+49\right)+...+7^{2018}\left(1+7+49\right)\)
\(\Leftrightarrow A=57+7^3\cdot57+...+7^{2018}\cdot57\)
\(\Leftrightarrow A=57\left(1+7^3+....+7^{2018}\right)\)
\(\Leftrightarrow A=3\cdot19\left(1+7^3+...+7^{2018}\right)\)
=> A chia 19 dư 0
Ta có:A=1+(7+72+73)+...+(72018+72019+72020)
A=1+[7(1+7+49)+...+72018(1+7+49)]
A=1+[57(7+72+...+72018)]
Do 57(7+72+...+72018) chia hết cho 19 nên 1+[57(7+72+..+72018)] chia 19 dư 1
cho A = 1 + 2 + 2^2 + ... + 2^2020 + 2^2021 + 2^2023 tìm số dư khi chia A cho 7 ( giúp mình với mình đang cần gấp )
\(A=1+2+2^2+...+2^{2020}+2^{2021}+2^{2023}\)
\(A=1+2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2020}\left(1+2+2^2\right)-2^{2022}+2^{2023}\)
\(A=1+2.7+2^4.7+...+2^{2020}.7-2^{2022}+2^{2023}\)
\(A=7\left(2+2^4+...+2^{2020}\right)+\left(2^{2022}+1\right)\left(1\right)\)
Ta có :
\(2^3=8\equiv1\) (mod 7)
\(\Rightarrow\left(2^3\right)^{674}\equiv1^{674}=1\) (mod 7)
\(\Rightarrow2^{2022}\equiv1\) (mod 7)
\(\Rightarrow2^{2022}+1\equiv1+1=2\) (mod 7)
\(\Rightarrow2^{2022}+1\equiv2\) (mod 7)
mà \(7\left(2+2^4+...+2^{2020}\right)⋮7\)
\(\left(1\right)\Rightarrow A=7\left(2+2^4+...+2^{2020}\right)+\left(2^{2022}+1\right)\equiv2\) (mod 7)
Vậy số dư của A khi chia cho 7 là 2
A=7+ 72 +73 +74+….+ 72015 tìm số dư khi chia A cho 57. giúp m vs
Cho \(A=1+2+2^2+...+2^{2019}+2^{2020}\)
Tìm số dư khi A chia cho 7
\(A=1+2+2^2+...+2^{2019}+2^{2020}\)
\(A=1+2+\left(2^2+2^3+2^4\right)+...+\left(2^{2018}+2^{2019}+2^{2020}\right)\)
\(A=3+2^2\left(1+2+2^2\right)+...+2^{2018}\left(1+2+2^2\right)\)
\(A=3+2^2.7+....+2^{2018}.7\)
\(A=3+7\left(2^2+....+2^{2018}\right)\)
Vì 3 ko chia hết cho 7
=> A ko chia hết cho 7
=> A dư 3
Bài 1: Tìm x, biết
X2020=x
Bài 2:
cho A=1+2+2 mũ 2 +..+2 mũ 2018+ 2 mũ 2019+2 mũ 2020. Tìm số dư chia A dư 7
giải giúp mình với!!
Bn nào giải nhanh, chính xác!
Mk tick cho
\(x^{2020}=x\Leftrightarrow x^{2020}-x=0\Leftrightarrow x\left(x^{2019}-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x^{2019}-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x^{2019}=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
\(1+2+2^2+2^3+....+2^{2019}+2^{2020}\)
\(A=\left(1+2+2^2\right)+\left(2^3+2^4+2^5\right)+....+\left(2^{2016}+2^{2017}+2^{2018}\right)+2^{2019}+2^{2020}\)
\(A=\left(1+2+2^2\right)+2^3\left(1+2+2^2\right)+.....+2^{2016}\left(1+2+2^2\right)+2^{2019}+2^{2020}\)
\(A=7+2^3.7+2^6.7+2^9.7+....+2^{2016}.7+2^{2019}+2^{2020}\)
\(\text{Ta có:}2^{2019}+2^{2020}=8^{673}+8^{673}.2\equiv1+1.2\left(\text{mod 7}\right)\equiv3\left(\text{mod 7}\right)\Rightarrow A\text{ chia 7 dư 3}\)
Tìm số dư khi chia số A = 7^1 + 7^2 + 7^3 + ... + 7^2013 cho 19
Làm ơn giúp mình với :((
7^1 + 7^2 + ... + 7^2013
= ( 7^1 + 7^2 + 7^3 ) +.... + ( 7^2011 + 7^2012 + 7^2013 )
= 7^1 . ( 1 + 7 + 49 ) + .... + 7^2011( 1+ 7+ 49 )
= 7^1 . 57 + .... + 7^2011 . 57
= 7^1 . 19 . 3 + ... + 7^2011 . 19 .3
=> A chia cho 19 dư 0
Tick nha
A = 7 mũ 1 + 7 mũ 2 + .....+ 7 mũ 2015 .
tìm số dư khi chia A cho 8 ; 57 ; 400
BAI 1 ;CHO BIEU THUC A=1+2+2^2+2^3+...+2^101+2^102
a) chứng minh rằng A chia hết cho 3;7 và chia hết cho 21
b) tìm chữ số tận cùng của tổng trên
BÀI 2; CHO BIEU THUC B = 1+7+7^2+...+7^2014+7^2015
a) chứng minh rằng B chia hết cho 57
b) biểu thức B chia cho 7 dư bao nhiêu
c) tìm số dư khi chia B cho 49
BÀI 3;CHO BIỂU THỨC A= 1+3+3^2+3^3+...+3^x
a) rút gọn biểu thức A
b) tìm x để bieu thức A= 3280
c) với x=17. chứng minh rằng A chia hết cho 4
đ) với x = 2017. tìm số dư cho phép chia A cho 9
tìm số dư của số A khi chia cho 7 biết A= 2020\(^{2021}\)
Lời giải:
Áp dụng định lý Fermat nhỏ thì:
$2020^6\equiv 1\pmod 7$
$\Rightarrow (2020^6)^{336}.2020^4\equiv 1^{336}.2020^4\equiv 2020^4\pmod 7$
Có:
$2020\equiv 4\pmod 7$
$\Rightarrow 2020^4\equiv 4^4\equiv 256\equiv 4\pmod 7$
$\Rightarrow A\equiv 2020^4\equiv 4\pmod 7$
Vậy $A$ chia $7$ dư $4$